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ABSTRACT

Uniform Circular Arrays (UCA) are an attractive and widespread geometry of planar
arrays. They are capable of 2-D DoA estimation with isotropic azimuth properties, unlike
most planar arrays. In this manner, beams can be electronically rotated along the circular
geometry without sensible changes in beam shape, likewise retaining the same precision in
DoA estimation. In linear and planar arrays, beams become progressively wider as they
rotate further of the array’s boresight. Among many successful applications, are the main
sonar arrays for the majority of submarines and surface vessel classes with anti-submarine
capabilities worldwide.
However, applying several array processing techniques developed speci cally for Uniform
Linear Arrays (ULA) is impossible, due to the particular form of Array Manifold Vectors
(or Steering Vectors) that UCAs possess. The Vandermonde structure of a ULA Array
Manifold allows the use of techniques such as Spatial Smoothing, Forward-Backward (FB)
Averaging, and, particularly, the Root-MUSIC algorithm for DoA estimation.
To circumvent this limitation, a beamspace transformation based on Phase Mode excitation,
through the expansion of the model of a plane wave impinging in the UCA in an in nite
series of Bessel functions of the rst kind, can be employed. This expansion can be
interpreted as a Discrete-Time Fourier Transform (DTFT) of the discrete-time signal
of a far- eld source plane hitting a continuous circular aperture. A spatially-sampled
version of this DTFT can be obtained from the output signal of the M -sensor UCA. So,
the sensor output vector can be interpreted as a Discrete Fourier Transform (DFT) of
the spatially sampled plane wave signal. With this beamspace technique, the azimuth-
dependant portion of the Array Manifold will have a Vandermonde structure, where the
Root-MUSIC algorithm can be employed. This beamspace Array Manifold Vector has a
Hermitian structure.
The planar geometry of the UCA results in zenithal non-isotropic behavior that a ects the
accuracy of azimuth and zenith estimations. This behavior translates into the tendency
of the absolute zenith error to increase with increasing source zenithal angle while the
absolute azimuth error decreases with increasing source zenithal angle. This behavior
suggests a compromise between error metrics concerning source zenith and a practical
angular region where both DoA estimations have acceptable accuracy.
Beamspace Root-MUSIC algorithm deals with the azimuth-only, Vandermonde-structured
portion of the beamspace array manifold. The zenith angle for each source is considered
previously estimated or the array and the sources are considered in the same plane (zenith
= 90¶), and the 2-D DoA estimation is not explicitly explored. We employ a simple

two-step process for 2-D DoA. First, the azimuth DoA is estimated via Root-MUSIC,
assuming = 90¶. Second, we perform D 1-D Spectral MUSIC searches through the
zenith angle parameter œ [0, /2]. This scheme bene ts from the aspects of beamspace
Root-MUSIC and associated techniques and resolves 2-D DoA with signi cantly reduced
computational e ort compared with 2-D Spectral MUSIC.
The number of phase modes (entries of the beamspace array manifold) capable of exciting
a circular array with considerable intensity depends on spatial sampling. It must a ord an
accurate description of the receiving characteristics of the array in beamspace, otherwise
resulting in biased DoA estimations.
Root-MUSIC can be paired with reduced sample support for the DoA solution as a less
demanding and faster algorithm. In this case, reasonable estimates of the covariance matrix



are unattainable.
Nevertheless, several techniques can emulate the e ects of the temporal averaging present
in a large number of snapshots. The conditioning of the sample covariance matrix to a
known ideal Toeplitz structure can mitigate the undesired e ects.

Keywords: Direction of Arrival Estimation. Uniform Circular Array (UCA). Phase-modes.

Beamspace transform. Small Sample Support. Sparse UCA. Thinned Array. Direction of

Arrival Estimation. Uniform Circular Array. Phase-mode Transformation. Small Sample

Support.



LIST OF FIGURES

Figure 1 – SVP and respective simpli ed ray-trace, illustrating sound propagation

scenarios of interest. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

Figure 2 – Simpli ed set of acoustic sensor arrays (hydrophones and projectors) of

a conventional submarine. . . . . . . . . . . . . . . . . . . . . . . . . . 24

Figure 3 – An example of an acoustic DoA estimation system with a UCA. The

m-th signal is processed by a bandpass lter (block PBF) and made

analytical by means of Hilbert transform (block H). . . . . . . . . . . . 33

Figure 4 – Behavior of the Bessel functions and dependence on the zenith parameter

. The blue dashed curves are Bessel functions os the rst kind of order

0 to 5, which the order n is smaller than the maximum argument 2 .

The black curve is the Bessel function of highest order less than the

maximum argument. The red dotted curves are Bessel functions which

the order n is larger than the maximum argument. . . . . . . . . . . . 39

Figure 5 – Phase modes-based beamspace transform diagram. . . . . . . . . . . . 40

Figure 6 – Element space MUSIC pseudo-spectrum. 16 sensor UCA resolving two

narrowband sources with angular positions: „SoI = 37.9¶, SoI = 57.7¶,

„Int = 120.5¶ and Int = 50.7¶. SIR of 3 dB, immerse in isotropic AWGN

with SNR of 10 dB. Sample support of 1,000 snapshots. . . . . . . . 43

Figure 7 – Beamspace MUSIC pseudo-spectrum. 16 sensor UCA mapped in beamspace

by 11 phase modes, resolving two narrowband sources with angular

positions: „SoI = 37.9¶, SoI = 57.7¶, „Int = 120.5¶ and Int = 50.7¶.

SIR of 3dB, immerse in isotropic AWGN with SNR of 10 dB. Sample

support of 1,000 snapshots. . . . . . . . . . . . . . . . . . . . . . . . 44

Figure 8 – Element space MUSIC pseudo-spectrum. 16 sensor UCA resolving two

narrowband sources with angular positions: „SoI = 37.9¶, SoI = 57.7¶,

„Int = 120.5¶ and Int = 50.7¶. SIR of 3 dB, immerse in isotropic AWGN

with SNR of 10 dB. Small sample support of 10 snapshots. . . . . . . 44

Figure 9 – Beamspace MUSIC pseudo-spectrum. 16 sensor UCA mapped in beamspace

by 11 phase modes, resolving two narrowband sources with angular

positions: „SoI = 37.9¶, SoI = 57.7¶, „Int = 120.5¶ and Int = 50.7¶.

SIR of 3 dB, immerse in isotropic AWGN with SNR of 10 dB. Small

sample support of 10 snapshots. . . . . . . . . . . . . . . . . . . . . . 45

Figure 10 – Our UCA 2-D DoA approach diagram. . . . . . . . . . . . . . . . . . . 46



Figure 11 – Z-plane Root-MUSIC azimuth solution. 16 sensor UCA mapped in

beamspace by 11 phase modes, resolving two narrowband sources with

angular positions „SoI = 37.9¶ and „Int = 120.5¶. SIR of 3 dB and SNR

of 10 dB. Sample support of 1,000 snapshots. . . . . . . . . . . . . . 46

Figure 12 – 1-D search Spectral MUSIC zenith solution. 16 sensor UCA, resolving

two narrowband sources with angular positions SoI = 57.7¶ and Int =

50.7¶. SIR of 3 dB and SNR of 10 dB. Sample support of 1,000 snapshots. 47

Figure 13 – Z-plane Root-MUSIC azimuth solution. 16 sensor UCA mapped in

beamspace by 11 phase modes, resolving two narrowband sources with

angular positions „SoI = 37.9¶ and „Int = 120.5¶. SIR of 3 dB and SNR

of 10 dB. Small sample support of 10 snapshots. . . . . . . . . . . . . 47

Figure 14 – 1-D search Spectral MUSIC zenith solution. 16 sensor UCA, resolving

two narrowband sources with angular positions SoI = 57.7¶ and Int =

50.7¶. SIR of 3 dB and SNR of 10 dB. Small sample support of 10

snapshots. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

Figure 15 – 3-D representation of an angular portion of element-space 2-D MUSIC

pseudo-spectrum. 16 sensor UCA, SIR of 3 dB, and SNR of 10 dB.

Resolving two sources with angular positions „SoI = 37.9¶, SoI = 57.7¶,

„Int = 120.5¶ and Int = 50.7¶. Small sample support of 10 snapshots. 49

Figure 16 – Visual representation of the e ects of azimuth DoA in zenith DoA

estimations. Element-space spectral MUSIC 2-D DoA estimation. 16

sensor UCA, SIR of 3 dB, and SNR of 10 dB. Sources simulated angular

positions are „SoI = 37.9¶, SoI = 57.7¶, „Int = 120.5¶ and Int = 50.7¶

and small sample support of 10 snapshots. Filled lines indicate zenith

DoAs SoI and Int and dashed lines represent intervals of azimuth DoA

errors that have marginal e ects on zenith DoA estimation accuracy. . 49

Figure 17 – Non-isotropic zenith-dependant DoA behavior. 16 sensor UCA, mapped

in beamspace by 11 phase modes, resolving single and two narrowband

sources with angular positions: „SoI = 37.9¶, SoI œ [10¶, 90¶], „Int =

120.5¶ and Int = 50.7¶. Note how the zenithal proximity with the

Interferer a ects azimuth DoA. . . . . . . . . . . . . . . . . . . . . . . 50

Figure 18 – Non-isotropic zenith-dependant DoA behavior. 16 sensor UCA, mapped

in beamspace by 11 phase modes, resolving single and two narrowband

sources with angular positions: „SoI = 37.9¶, SoI œ [10¶, 90¶], „Int =

120.5¶ and Int = 50.7¶. With better SNR and SIR, the e ects of zenithal

proximity are more evident. . . . . . . . . . . . . . . . . . . . . . . . . 51



Figure 19 – Small Sample Support, non-isotropic zenith-dependant DoA behavior.

16 sensor UCA, mapped in beamspace by 11 phase modes, resolving

single and two narrowband sources with angular positions: „SoI = 37.9¶,

SoI œ [10¶, 90¶], „Int = 120.5¶ and Int = 50.7¶. Reduced sample

support exacerbates the previous behavior. . . . . . . . . . . . . . . . . 51

Figure 20 – Small Sample Support, non-isotropic zenith-dependant DoA behavior.

16 sensor UCA, mapped in beamspace by 11 phase modes, resolving

single and two narrowband sources with angular positions: „SoI = 37.9¶,

SoI œ [10¶, 90¶], „Int = 120.5¶ and Int = 50.7¶. Better SNR and SIR

slightly made up for negative small sample support e ects. . . . . . . . 52

Figure 21 – Spatial aliased DoA estimation: additional phase modes incorporation

diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

Figure 22 – Small sample support DoA estimation diagram. . . . . . . . . . . . . . 56

Figure 23 – Incorporated phase modes in 2-D DoA estimation. UCA having six

sensors with spacing of 1.047 , resolving two narrowband sources

with angular positions „SoI = 37.9¶, SoI = 57.7¶, „Int = 120.5¶ and

Int = 50.7¶. SIR of 3 dB and SNR of 10 dB. Sample support of 1,000

snapshots. Additional phase modes are incorporated (from an initial

5 up to a total of 13). The vertical dotted line indicates the optimum

number of phase modes. . . . . . . . . . . . . . . . . . . . . . . . . . . 63

Figure 24 – Incorporated phase modes in 2-D DoA estimation. UCA having six

sensors with spacing of 1.047 , resolving a single narrowband source

with angular positions „SoI = 37.9¶ and SoI = 57.7¶. SNR of 10 dB

and sample support of 1,000 snapshots. Additional phase modes are

incorporated (from an initial 5 up to a total of 13). The vertical dotted

line indicates the optimum number of phase modes. . . . . . . . . . . . 64

Figure 25 – Absolute 2-D DoA estimation error of the SoI source. UCA having

six sensors with spacing of 1.047 , resolving two narrowband sources

with angular positions „SoI = 37.9¶, SoI = 57.7¶, „Int = 120.5¶ and

Int = 50.7¶. SIR of 3 dB and SNR of 10 dB. Sample support of 1,000

snapshots. UCA mapped in beamspace with 5 and 11 (5+6 incorporated)

phase modes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

Figure 26 – Absolute 2-D DoA estimation error of the Interferer source. UCA

having six sensors with spacing of 1.047 , resolving two narrowband

sources with angular positions „SoI = 37.9¶, SoI = 57.7¶, „Int = 120.5¶

and Int = 50.7¶. SIR of 3 dB and SNR of 10 dB. Sample support

of 1,000 snapshots. UCA mapped in beamspace with 5 and 11 (5+6

incorporated) phase modes. . . . . . . . . . . . . . . . . . . . . . . . . 65



Figure 27 – Absolute 2-D DoA estimation error of a single source. UCA having

six sensors with spacing of 1.047 , resolving two narrowband sources

with angular positions „SoI = 37.9¶, SoI = 57.7¶, „Int = 120.5¶ and

Int = 50.7¶. SIR of 3 dB and SNR of 10 dB. Sample support of 1,000

snapshots. UCA mapped in beamspace with 5 and 11 (5+6 incorporated)

phase modes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

Figure 28 – Decreasing sample support in UCA 2-D DoA estimation. Depicting

SoI source estimation errors as a function of the number of snapshots,

both in the presence (SSS) and absence (no SSS) of small sample

support mitigation. UCA with 16 sensors mapped by 11 phase modes.

Resolving two narrowband sources with angular positions „SoI = 37.9¶,

SoI = 57.7¶, „Int = 120.5¶ and Int = 50.7¶. SIR of 5 dB and SNR

of 10 dB. µ of 0.9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

Figure 29 – Decreasing sample support in UCA 2-D DoA estimation. Depicting

Interferer source estimation errors as a function of the number of

snapshots, both in the presence (SSS) and absence (no SSS) of small

sample support mitigation. UCA with 16 sensors mapped by 11 phase

modes. Resolving two narrowband sources with angular positions „SoI =

37.9¶, SoI = 57.7¶, „Int = 120.5¶ and Int = 50.7¶. SIR of 5 dB and

SNR of 10 dB. µ of 0.9. . . . . . . . . . . . . . . . . . . . . . . . . . 67

Figure 30 – Decreasing sample support in UCA 2-D DoA estimation. Depicting

single source estimation errors as a function of the number of snapshots,

both in the presence (SSS) and absence (no SSS) of small sample

support mitigation. UCA with 16 sensors mapped by 11 phase modes.

Narrowband source with angular positions „SoI = 37.9¶, SoI = 57.7¶.

SIR of 5 dB and SNR of 10 dB. µ of 0.9. . . . . . . . . . . . . . . 68

Figure 31 – Decreasing sample support in UCA 2-D DoA estimation. Depicting

SoI source estimation errors as a function of the number of snapshots,

both in the presence (SSS) and absence (no SSS) of small sample

support mitigation. UCA with 16 sensors mapped by 11 phase modes.

Resolving two narrowband sources with angular positions „SoI = 37.9¶,

SoI = 57.7¶, „Int = 120.5¶ and Int = 50.7¶. SIR of 3 dB and SNR

of 5 dB. µ of 0.9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68



Figure 32 – Decreasing sample support in UCA 2-D DoA estimation. Depicting

Interferer source estimation errors as a function of the number of

snapshots, both in the presence (SSS) and absence (no SSS) of small

sample support mitigation. UCA with 16 sensors mapped by 11 phase

modes. Resolving two narrowband sources with angular positions „SoI =

37.9¶, SoI = 57.7¶, „Int = 120.5¶ and Int = 50.7¶.SIR of 3 dB and

SNR of 5 dB. µ of 0.9. . . . . . . . . . . . . . . . . . . . . . . . . . . 69

Figure 33 – Decreasing sample support in UCA 2-D DoA estimation. Depicting

single source estimation errors as a function of the number of snapshots,

both in the presence (SSS) and absence (no SSS) of small sample

support mitigation. UCA with 16 sensors mapped by 11 phase modes.

Narrowband source with angular positions „SoI = 37.9¶, SoI = 57.7¶.

SIR of 3 dB and SNR of 5 dB. µ of 0.9. . . . . . . . . . . . . . . . 69

Figure 34 – E ects of factor µ in small sample support UCA 2-D DoA estimation.

16 sensor UCA mapped in beamspace by 11 phase modes. Resolving two

narrowband sources with angular positions „SoI = 37.9¶, SoI = 57.7¶,

„Int = 120.5¶ and Int = 50.7¶. SNR 10 dB and SIR 3 dB. Sample

support 1,000 snapshots. . . . . . . . . . . . . . . . . . . . . . . . . . 70

Figure 35 – E ects of factor µ in small sample support UCA 2-D DoA estimation.

16 sensor UCA mapped in beamspace by 11 phase modes. Resolving two

narrowband sources with angular positions „SoI = 37.9¶, SoI = 57.7¶,

„Int = 120.5¶ and Int = 50.7¶. SNR 10 dB and SIR 3 dB. Small sample

support of 10 snapshots. . . . . . . . . . . . . . . . . . . . . . . . . . 70

Figure 36 – E ects of factor µ in small sample support UCA 2-D DoA estimation.

16 sensor UCA mapped in beamspace by 11 phase modes. Resolving two

narrowband sources with angular positions „SoI = 37.9¶, SoI = 57.7¶,

„Int = 120.5¶ and Int = 50.7¶. SNR 10 dB and SIR 3 dB. Small sample

support of a single snapshot. . . . . . . . . . . . . . . . . . . . . . . 71

Figure 37 – Combined e ects of incorporating phase modes in small sample support

2-D DoA estimation employing Leakage Minimization (SSS). UCA

having six sensors with spacing of 1.047 , resolving two narrowband

sources with angular positions „SoI = 37.9¶, SoI = 57.7¶, „Int = 120.5¶

and Int = 50.7¶. SIR of 3 dB, SNR of 10 dB and small sample support

of 10 snapshots. Additional phase modes are incorporated (from

an initial 5 up to a total of 13). . . . . . . . . . . . . . . . . . . . . . . 72



Figure 38 – Combined e ects of incorporating phase modes in small sample support

2-D DoA estimation without Leakage Minimization (no SSS). UCA

having six sensors with spacing of 1.047 , resolving two narrowband

sources with angular positions „SoI = 37.9¶, SoI = 57.7¶, „Int = 120.5¶

and Int = 50.7¶. SIR of 3 dB, SNR of 10 dB and small sample support

of 10 snapshots. Additional phase modes are incorporated (from

an initial 5 up to a total of 13). . . . . . . . . . . . . . . . . . . . . . . 72

Figure 39 – Combined behavior of beamspace mapping and Leakage Minimization

with decreasing sample support for SoI azimuth DoA. UCA having

six sensors with a spacing of 1.047 and beamspace mapping with 5

and 11 (5+6 incorporated) phase modes. Resolving two narrowband

sources with angular positions „SoI = 37.9¶, SoI = 57.7¶, „Int = 120.5¶

and Int = 50.7¶. SIR of 3 dB and SNR of 10 dB. . . . . . . . . . . . . 73

Figure 40 – Combined behavior of beamspace mapping and Leakage Minimization

with decreasing sample support for SoI zenith DoA. UCA having six

sensors with a spacing of 1.047 and beamspace mapping with 5 and

11 (5+6 incorporated) phase modes. Resolving two narrowband sources

with angular positions „SoI = 37.9¶, SoI = 57.7¶, „Int = 120.5¶ and

Int = 50.7¶. SIR of 3 dB and SNR of 10 dB. . . . . . . . . . . . . . . . 74

Figure 41 – Combined behavior of beamspace mapping and Leakage Minimization

with decreasing sample support for Interferer azimuth DoA. UCA

having six sensors with a spacing of 1.047 and beamspace mapping

with 5 and 11 (5+6 incorporated) phase modes. Resolving two nar-

rowband sources with angular positions „SoI = 37.9¶, SoI = 57.7¶,

„Int = 120.5¶ and Int = 50.7¶. SIR of 3 dB and SNR of 10 dB. . . . . . 74

Figure 42 – Combined behavior of beamspace mapping and Leakage Minimization

with decreasing sample support for Interferer zenith DoA. UCA

having six sensors with spacing of 1.047 and beamspace mapping with

5 and 11 (5+6 incorporated) phase modes. Resolving two narrowband

sources with angular positions „SoI = 37.9¶, SoI = 57.7¶, „Int = 120.5¶

and Int = 50.7¶. SIR of 3 dB and SNR of 10 dB. . . . . . . . . . . . . 75

Figure 43 – Decreasing sample support in simulated underwater 2-D DoA estimation.

32 sensor UCA mapped by 15 phase modes. Resolving two narrowband

sources (real signals) with angular positions „CS = 23.1¶, CS = 48.5¶,

„MB = 142¶ and MB = 34.7¶ with multipath propagation. Depicting

the Cruise ship (SoI) DoA estimation errors in function of sample

support. SNR 15 dB, SIR 5 dB, and multipath attenuation of 15 dB. . 76



Figure 44 – Decreasing sample support in simulated underwater 2-D DoA estimation.

32 sensor UCA mapped by 15 phase modes. Resolving two narrowband

sources (real signals) with angular positions „CS = 23.1¶, CS = 48.5¶,

„MB = 142¶ and MB = 34.7¶ with multipath propagation. Depicting

the Motorboat (Interferer) DoA estimation errors in function of

sample support. SNR 15 dB, SIR 5 dB, and multipath attenuation of

15 dB. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

Figure 45 – E ects of factor µ in simulated underwater 2-D DoA estimation and

small sample support. Resolving two narrowband sources (real signals)

with angular positions „CS = 23.1¶, CS = 48.5¶, „MB = 142¶ and

MB = 34.7¶ with multipath propagation. Small sample support of

20 snapshots, SNR 15 dB, SIR 5 dB, and multipath propagation

attenuation of 15 dB. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77



LIST OF ABBREVIATIONS AND ACRONYMS

A/D Analog-to-Digital

AWGN Additive White Gaussian Noise

BF Beamforming

CHA Cylindrical Hydrophone Array

DoA Direction of Arrival

DFT Discrete Fourier Transform

DTFT Discrete-Time Fourier Transform

ESPRIT Estimation of Signal Parameters by Rotational Invariance Techniques

FAS Flank Array Sonar

IHA Intercept Hydrophone Array

Int Interferer signal

MFA Medium Frequency Active

MUSIC Multiple Signal Classi cation

PRS Passive Ranging Sonar

SINR Signal-to-Interference-plus-Noise Ratio

SIR Signal-to-Noise Ratio

SoI Signal of Interest

SSS Small Sample Support

SVP Sound Velocity Pro le

TMA Target Motion Analysis

UCA Uniform Circular Array

ULA Uniform Linear Array



LIST OF SYMBOLS

œ In

N Phase mode number (beamspace)

n Phase mode index (beamspace)

M Sensor number (element space)

m Sensor index (element space)

“ Angular position (continuous circular aperture)

„ Azimuth angle

Zenith angle

Wavelength

d Source index

D Number ofof sources

R Radius

K Number of snapshots

k Discrete-time index

J Bessel function of the rst kind

µ Leakage minimization factor

Y Wavenumber
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1 INTRODUCTION

This chapter brings the perspective of sonar operation and aspects of the underwater

acoustic environment to give a background closer to the real world. We introduce the

basics of sonar operations and the main topics to be considered about acoustic signals of

interest and the underwater environment.

Several factors in uence the design and operation of sonars in submarines, including

dimensions, geometry, operating frequency of sonar arrays, acoustic environment, and the

signals present in this environment that we intend to detect and estimate parameters. We

also present a few details of the speci c problem of array signal processing with small

sample support in submarine sonar arrays.

1.1 Main Array Geometries

Sensor arrays have diversi ed applications that play an important role in deter-

mining a particular spatial disposition of their sensor elements (aperture, or physical

dimensions of an array). Regarding the aperture, arrays can be classi ed as linear, planar,

or volumetric TREES, 2007.

Linear arrays have elements spanning along a single dimension. The Uniform Linear

Array (ULA) is the most widespread geometry and spearheaded a large portion of array

signal processing. This simple geometry allows non-isotropic processing only in 1-D and

presents ambiguities in these solutions resulting in an unambiguous non-isotropic coverage

of only 180¶.

Planar arrays span along two dimensions, extending the behavior of linear arrays.

Capable of 2-D spacial ltering and DoA. A particular type of planar array with interesting

isotropic properties and the scope of this work is the Uniform Circular Array (UCA). This

type consists of several sensors arranged uniformly along a circle. The circular aperture

has an advantage when compared with other planar arrays: a 360¶ isotropic coverage

around the plane of the aperture SWINDLEHURST; KAILATH, 1993 (accuracy of DoA

estimation and shape of beams are practically constants along the entire circular aperture).

Volumetric arrays have complex geometries and signal models but have the unique

property of unambiguous solutions along the angular coverage. Of particular importance

for sonar applications are the geometries that can provide isotropic unambiguous coverage:

Uniform Cylindrical Arrays and Spherical Arrays. A more recent addition to the volumetric

array is the conformal geometry, where sensor elements are distributed around a 3-D

arbitrary surface that improves angular coverage and accuracy and reduces physical
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dimensions at the cost of greater complexity due to the non-uniformity of the geometry.

1.2 Rudiments of Submarine Sonar Operation

The underwater acoustic environment can be extremely complex in terms of sound

wave propagation and background noise. Such complexity is exacerbated by geographic

regions of "shallow waters or brown waters". The term roughly de nes the maritime

environment where the propagation of signals of interest is altered by the interaction with

the boundaries (surface and bottom). This interaction and, consequently, the de nition

of "shallow water" depends on the frequency content of the signal of interest, as well as

on the Sound Velocity Pro le (SVP) WAITE, 2002. In such regions, the phenomenon

of propagation with multiple re ections (multipath) presents great challenges in signal

processing as they result in several distinct correlated sources for the sensor array. Moreover,

in such environments, the reverberation of background noise results in intensely noisy

zones.

In order to relate the various factors that permeate the operation of sonar in

submarines, this work divides them into the following subsections:

1.2.1 Sound propagation in the underwater environment

The Sound Velocity Pro le is the primary expression of sound propagation charac-

teristics in sonar operation. The SVP is a measure of sound propagation velocity versus

depth. This can be obtained either by direct measurement (measuring time of emission

and re ection in an acoustic sensor) or by indirect means, where salinity, temperature,

and density are measured and serve as inputs for obtaining the speed of sound. The

SVP serves as input data for sonar range prediction (also given the characteristics of the

source whose detection range is to be estimated) and raytracing algorithms, where the

2-D expected vertical path of sound propagation direction underwater, contributes to

situational awareness regarding the acoustic environment, identifying shadow zones (low

density of sound waves), listening zones (high density of rays), and layer depths and sound

ducts (depths where the gradient of the SVP change sign) MARAGE; MORI, 2013.

In Fig. 1, (a) SVP with positive gradient - Higher density of sound waves near the

surface and lower density in deep water. Sound propagates in a curved upwards trajectory.

(b) SVP with negative gradient - Higher density of sound waves in deep water and lower

density near the surface. Sound propagates in a curved downward trajectory. (c) Layer

Depth - Inverting the gradient produces a "shadow zone", with low sound wave density

around the layer depth. (d) Duct - Gradient inversion allows successive refractions around

the duct depth, trapping sound waves within the duct and enabling large propagation

distances due to reduced propagation losses caused by refraction-only propagation.
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Figure 1 – SVP and respective simpli ed ray-trace, illustrating sound propagation scenarios
of interest.

1.2.2 Aspects of Submarine Operation

Submarines have very speci c demands for the operation of their sensors, notably

acoustic sensors. The information provided is part of a broader process of Target Motion

Analysis (TMA), with the determination of several parameters (bearing, distance, heading

and speed, and, in some cases, elevation). However, the estimation of all parameters of

a signal of interest (SoI), apart from very rare exceptions in the doctrine of each Navy,

is carried out through totally passive means. For this reason, the operation of all sonar

types is geared towards DoA estimation. This estimation serves as a basis for the TMA

process to estimate all the other parameters, including re ning the distances obtained by

dedicated active sonar, if available. With those particularities in mind, we conclude that

the accuracy of DoA estimation is of paramount importance and great complexity. The

di culties in the underwater environment are associated with frequencies, the directivity

of the sources of interest, and their movement.

Detection almost exclusively by passive means is just one aspect of a precept that

de nes the submarine platform: its discretion. Discretion is understood as the ability

to avoid or hinder the detection of the submarine by any means: acoustic, electromag-

netic, infrared, and visual. This limitation greatly restricts the performance of passive

sensors dependent on the conditions of sources, interference, noise, and the correct and

e cient exploitation of these conditions. Furthermore, accurate measurements that exploit

echolocation or bistatic and multistatic schemes are prohibitive WAITE, 2002. In these

processes, complex solutions and large amounts of input data are required, in addition to

accurate modeling of a sensor array and input signals to overcome challenges such as low
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SINR (Signal-to-interference plus noise-ratio) situations, correlated/coherent sources, and

situations with a reduced amount of signal samples (Small Sample Support).

Despite the operational limitations imposed on the use of sensors, it is possible

to accurately estimate all target parameters starting with only accurate DoA estimates.

Target Motion Analysis mainly processes successive DoAs through algorithms (based,

for example, on Kalman lters and maximum likelihood estimation, among others) that

process predicted and actual measurements. Re ning these predictions to obtain acceptable

solutions that will compose the tactical picture (a continuous process of re ning situational

awareness) or as input data for launching and guiding weapons.

1.2.3 Acoustic Signals of Interest for Submarines

Among several challenging characteristics of SoIs that complicate detection and

DoA estimation, such as low SINR, correlation/coherence of several sources, and frequencies

outside the operating range of the sensors, two of them should be highlighted for their

intimate relationship with the scope of this work: angular position concerning the plane of

the array and persistence of the source.

In practice, the SoIs for a submarine will be very close to the plane of the sensor

array. This is evident by the disparity in the dimensions parallel to the plane of the

arrangement (Detection and DoA estimation of an SoI several kilometers away) and

perpendicular (depth of submarines is restricted to a few hundred meters). Thus, in most

cases, 2-D DoA estimation will result in elevation angles very close to the horizontal plane.

Adding to the fact that, operationally speaking, the elevation information, in most cases, is

not as important as the azimuth, we conclude that 2-D DoA estimation will be of interest

only to certain particular situations, e.g., the detection of other submarines, which occurs

at short distances and with expressive vertical separation.

Another characteristic of SoIs that is re ected in a particularly important challenge

is transient behavior. It is understood as transient a signal of short duration and rapid

attenuation. Consequently, a small set of spatial samples (snapshots) of the transient signal

will be available. This small sample support demands additional array signal processing

methods, in order to eliminate noise components still present (which, with an expressive

number of samples, would become negligible) or to better conditioning of input data. The

fast response capability in DoA, however, is not only useful for transient sources. Tracking

(successive DoAs) of mobile sources and active sonar emissions (short-lived and rapidly

fading) also relies on methods with reduced sample support.
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Figure 2 – Simpli ed set of acoustic sensor arrays (hydrophones and projectors) of a
conventional submarine.

1.2.4 Submarine Sonar Arrays

A modern submarine has several sonar arrays and processing methods in order

to be able to operate in di erent conditions: di erent frequency bands, angular coverage,

and parameter estimation accuracy. The most common types of arrays, present on most

modern submarines, are listed, but not limited to, as

• Cylindrical Hydrophone Array (CHA) - Main component of the sonar system, capable

of performing panoramic surveillance (360°) and analysis in wideband (usually in

the range of 1 to 12 kHz) and in narrowband. Mainly detecting cavitation noises

and higher frequencies of acoustic signature. In larger nuclear submarines, optimized

to operate against other submarines, the cylindrical arrangement is replaced by a

volumetric array (spherical or conformal). This type of array, substantially larger

and more complex, allows, among other advantages, high isotropic resolution both

in azimuth and in elevation and no DoA ambiguity;

• Flank Array Sonar (FAS) - Uniform Linear Array (ULA) type sonar that allows,

albeit in a limited way due to physical dimensions, to explore the low-frequency

acoustic signatures, since it operates at lower frequencies (usually from 0.2 to 2.5

kHz). Small in size compared to towed arrays, it can be installed on relatively small

conventional submarines;

• Passive Ranging Sonar (PRS) - Two distinct sets (one on each side) of three planar

arrays, mainly used for distance estimation by passive methods, operating in the

same frequency band as the CHA;
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• Medium Frequency Active Sonar (MFA) - Cylindrical array used for detection and,

mainly, distance estimation by active means (emission of several waveforms and

detection of the return signal by the CHA) or as a somewhat downgraded backup

for the CHA;

• Intercept Hydrophone Array (IHA) - Cylindrical array, used for early warning and

analysis of active sonar emissions from surface ships, submarines, helicopter dipping

sonars, sound buoys, and torpedoes. Operating at higher frequencies, consistent with

the emissions it intends to detect, in the range of 12 to 100 kHz; and

• Towed Array - Large ULA capable of detecting very low frequencies. Thus, it is able

to explore the entire range referring to the acoustic signature. It also has a large

detection range. However, its operation is more delicate and limits the maneuverability

of the vessel. Its use is less widespread than other types of submarine sonar.

1.3 Requirements for a Uniform Circular Array in Submarines

After brief comments on the main particularities and restrictions in the operation

of sonars in submarines, it is evident that a sonar system must have several design

requirements. Based on this, we can propose the following requirements regarding the

estimation and presentation of DoA information:

• DoA with azimuth parameter scan - It is interesting for the operator that the signal

processing of the circular array is presented along the entire angular parameter

space (pseudo-spectrum of the entire discrete span of the 360° aperture). In this way,

additional information of tactical nature can be extracted, in addition to greater

situational awareness. Thus, it is desirable that the system has an algorithm that

provides not only closed-form solutions, despite the high computational cost of

angular parameter scan.

• Processing and displaying DoA estimation in 2-D in closed-form - In some particular

situations, such as DoA tracking from transient or fast-moving sources, the need

for fast responses, the computational cost of angular parameter scans, and, to some

extent, the loss of the tactical value of this type of presentation makes it desirable

that the system can also produce solutions in closed form (solution as a numerical

value). It would also be desirable that, while the azimuth information is presented

through a 360° scan, the elevation information, when necessary, is presented in a

closed form, as an angular scan in elevation would make little sense.

• DoA with reduced sample support (transient SoIs) - Recent developments in array

signal processing for sonars application focus on this particular signal characteristic.
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This is because short-duration signals are the best means of detecting and tracking

other submarines. Transient signals make up most of the typically reduced acoustic

signatures of submarines.

• High resolution in azimuth DoA to improve target motion analysis processes - Due

to the detection and estimation of all target parameters being performed (almost

exclusively) passively and these estimations being heavily based on DoAs, its accuracy

is clearly of paramount importance.

1.4 Motivation

Sonar operation by submarines is permeated by unique characteristics imposed by

various requirements and limitations. The underwater acoustic environment is complex,

exacerbated by almost exclusively passive operation of acoustic sensors. In particular, fast

solutions in DoA estimation are desirable, mainly due to the presence of transient sources,

which represent practically the entirety of the acoustic signature of another submarine, as

well as fast-moving sources, a constant in the use of sonar in submarines. In both cases,

the amount of input data from the array sensors is very small, making processing di cult,

and the transitory nature of these sources urges a quick DoA solution. Circular/cylindrical

arrays are the centerpieces of sonar systems on any submarine.

In line with these circumstances, this work motivated us to explore DoA estimation

for transient sources in a signal and noise environment close to that encountered by a

submarine in operation. To this end, we will seek to simulate signals that are based on

recordings of underwater sources of interest that re ect characteristics of the acoustic

environment of a submarine. From this, we use recent array signal processing techniques

to improve the DoA estimation of circular/cylindrical arrays under conditions of a reduced

number of samples (representing transient or fast-moving sources) and, through comparison

with widely spread methods, we expect to see a performance gain under the simulated

conditions.

1.5 Contributions

The main objectives of this work are the compilation of a comprehensive set of

formulations for UCA beamspace transform, unifying the works of several previous authors.

With phase mode-based beamspace transform as a springboard, we proceed to deal with

the problem of 2-D DoA it beamspace UCA, assessing the e ects of our 2-step uncoupled

2-D DoA approach, employing two distinct versions of MUSIC algorithm (beamspace

Root-MUSIC for azimuth and element-space Spectral MUSIC for zenith) and the combined

e ects of the zenith-dependent, non-isotropic UCA beampattern.
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Regarding our main topic, the limited quantity of input data, we evaluate the

e ects of reduced spatial and temporal data, spatial aliasing, and subspace leakage, in

UCA 2-D DoA and the capabilities of mitigation techniques, Incorporated Phase Modes

and Leakage Minimization, to promote improvements in estimations. Finally, we manage

to obtain numerical results to evaluate these techniques both in single multivariate and

joint multivariate simulations, as well as in a simulated underwater environment, with

real-life signal and multipath propagation. This resulted in the article "DoA Estimation

Performance of UCAs with Reduced Number of Sensors using Phase-Mode Transformation

and Small Sample Support", in the twelfth IEEE Sensor Array and Multichannel Signal

Processing (SAM) Workshop in Trondheim, Norway MURMEL et al., 2022.
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2 BASIC CONCEPTS OF ARRAY SIGNAL PROCESSING AND

DIRECTION OF ARRIVAL ESTIMATION

In this chapter, we review the fundamentals of array signal processing, beamforming

and DoA estimation, and the most important classical methods. Next, focusing on DoA

estimation, we address the subspace-based approaches, speci cally the MUSIC algorithm

and one of its polynomial rooting variations, the Root-MUSIC algorithm.

Sensor array signal processing can be understood as the processing of temporal and

spatial data, based on known characteristics of the spatial arrangement of sensors KRIM;

VIBERG, 1996 and statistical properties of the signal. Its rst developments date back

to the 1940s when it was rst used in spatial ltering or beamforming. For a long time,

its development focused on Uniform Linear Arrays and a number of planar geometries.

Uniform Circular Arrays had limited development from the 1940s onward, without major

developments in the next 20 years. However, during the 1960s, the work of several authors

revolutionized the application of this type of arrangement when developing the beamspace

transformation based on Phase Modes. This approach made it possible to map the UCA

into a bemspace, ULA-like array manifold vector. Moreover, allowed the application

of techniques that were previously exclusive to linear geometry HICKMAN; NEFF;

TILLMAN, 1961.

2.1 Sensor Arrays and Signal Models

Next, we present concepts related to signal processing in arrays: the direction-

nding (DoA estimation) of the input signal and the enhancement of the SoI in a speci c

direction (Beamforming). Although these two main applications share many concepts,

including being interdependent, since the DoA estimation provides information on the

direction of the signal of interest that will be enhanced or attenuated by the beamformer,

they di er conceptually and in scope.

Next, we discuss the signal model received by an array of sensors. Considering that

a signal of interest s(t) has a central frequency f0 and a frequency band —f , such that

the relationship —f/f0 is very small, we assume such a signal to be Narrowband (NB).

A real-valued signal x(t) has positive and negative frequency components. A

complex-valued version of the signal with only positive frequency components (analytic

signal) can be obtained, where the real and imaginary parts are related by the Hilbert

transform OPPENHEIM; SCHAFER, 2009.

We can represent a NB analytic signal by x(t) = s(t)ej 0t, 0 = 2 f0 as a modulated
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s(t) by a carrier frequency f0. The signal s(t) contains the information being transmitted

and has frequency components much lower than the center frequency f0. A time-delayed

version of a narrowband, analytic signal like x(t —t) can be obtained by multiplying

x(t) by a complex exponential e j 0—t

x(t)e j 0—t = s(t)ej 0te j 0—t = s(t)ej 0(t —t) ¥ x(t —t) (2.1)

if we assume s(t) ¥ s(t —t), which is valid for —f/f0 much smaller than 1, that is, s(t)

does not vary too much within —t.

Thus, multiplication by the complex exponential e j 0—t corresponds to a time

delay —t of the analytic and narrowband signal x(t) = s(t)ej 0t. In this way, the signals

arriving from di erent sensors can be aligned if we know their mutual phase shifts or,

equivalently, their arrival direction (the angle formed by the wavefront and the imaginary

line that crosses the sensors), the speed of propagation of a far- eld plane wave (assuming

the source at a distance such that the wavefront arrives practically at to the array of

sensors) and the positions of the sensors.

According to this hypothesis, we can assume a relationship between the phase

delays of the signal received by each sensor in the array and the 2-D azimuth and zenith

DoA („d, d), respectively, of that signal with respect to some frame of reference in the

array geometry TREES, 2007. After sampling and preprocessing to transform these SoIs

into NB and analytical, K snapshots are obtained, which will serve as the input signal of

the array, which can then be modeled for each of the D sources as follow.

x(k) =
Ë
x1(k) x2(k) . . . xM (k)

ÈT
, (2.2)

where xm(k), m œ {1, 2 . . . ,M}, is given by xm(k) = s(k)ejÊoke j o tm , according to the

analytic NB hypothesis. We can express tm in terms of „ and angles of arrival. Thus,

for D = 1 we can express x(k) in the form:

x(k) = a(„, )s(k)ejÊok + n(k), (2.3)

where n(k) is the (M 1) noise vector, modeled as uncorrelated with SoI, and a(„, )

is the Array Manifold Vector of a given SOI, also called Steering Vector, of dimensions

(M 1). It contains DoA information of the SoI in the successive phase delays of its inputs,

in the form:

a(„) =
Ë
e j o t1(„, ), e j o t2(„, ), . . . , e j o tm(„, )

ÈT
, (2.4)

where the form of a(„) depends on the geometry of the sensor array. For D sources, the

signal model would be
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x(k) = A(„)s(k) + n(k), (2.5)

where A(„) is a matrix (M D), whose columns are the array manifold vectors from each

of the D sources, also called the array manifold matrix. s(k) is the (D 1) signal vector,

i.e., s(k) = [s1(k), . . . , sD(k)].

2.2 Direction of Arrival and Beamforming

Successive phase shifts in the output signals from each sensor in a set of snapshots

x(k) express the information of Direction of Arrival in the form of the array manifold

vectors a(„d, d), one for each D sources detected by the sensor array.

Beamforming (BF) is the attribution of complex-valued gains for each sensor of

the array in order to enhance reception in a determined direction while attenuating in

other directions KRIM; VIBERG, 1996. BF weight vector coe cients can be xed, like the

classical Bartlett or Delay-&-Sum (D&S) algorithm and its derivations, or as statistical

beamformers, where statistical properties of the input signal are used DINIZ; SILVA;

NETTO, 2010. Statistical BF is performed by minimizing a cost function of the spatial

lter w, subjected to the distortionless response constraint, wHa(„, ) = 1, such as the

Minimum Power Distortionless Response (MPDR) or the Minimum Variance Distortionless

Response (MVDR) or Capon BF.

A BF with xed coe cients needs a certain quantity of snapshots in order to obtain

a consistent sample covariance matrix. To overcome this necessity, adaptive BF arises as a

solution, where recursive algorithms process each snapshot and thoroughly update the

coe cients of w(k) in each k iteration, approaching the optimal MPDR solution based

on error metrics. Additional constraints can be imposed within a Linearly Constrained

Adaptive Filter (LCAF).

2.3 Classical DoA Algorithms

BF methods can be employed in DoA estimation by expressing the vector w(k)

as a function of the candidate array manifold vector a(„, ) and the candidate 2-D DoA

(„, ). The DoA is estimated by constructing the sample covariance matrix from a number

of snapshots of the incoming signal and computing the BF spectrum for a set of discrete

candidates DoAs and evaluating the angular parameters „ and for the peak values. In

this way, the array gain KRISHNAVENI; KESAVAMURTHY; APARNA, 2013 in the

estimated directions of interest is enhanced and unwanted signals from other sources are

attenuated.
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2.4 Subspace-Based Methods for DoA Estimation

Subspace-based methods are also based on a statistical model of the incoming

signal. This approach serves as the basis for several array signal processing algorithms. It

consists of the eigenanalysis of the covariance matrix of the input signal and, as dictated

by the signal model, the decomposition into two orthogonal subspaces: signal and noise

subspaces. Projecting the array manifold onto the noise subspace and selecting maximum

or minimum values parameters through angular parameters search with candidate array

manifolds results in the MUSIC pseudo-spectrum.

The parameter of interest (DoA) is contained in the maximum eigenvalues in

the signal subspace. The solutions involve angular parameter search (MUSIC - MUltiple

SIgnal Classi cation) SCHMIDT, 1986, polynomial rooting (Root-MUSIC) ZOLTOWSKI;

KAUTZ; SILVERSTEIN, 1993 and estimations in closed form, exploring the rotational

invariance between subarrays of an initial sensor array with a vector of known displace-

ment ROY; KAILATH, 1989 (ESPRIT - Estimation of Signal Parameters by Rotational

Invariance Techniques).

2.4.1 MUSIC and Root-MUSIC Algorithms

According to the 2-D signal model in Eq. (2.5) and the hypothesis of orthogonality

between signal and noise, we can write the covariance matrix of the input signal Rx =

E[x(k)xH(k)] as:

Rx = A(„, )RsA(„, )T + ‡2I, (2.6)

where Rs = E[s(k)sH(k)] is the signal covariance matrix. By eigendecomposition of Rx

and sorting the eigenvalues and corresponding eigenvectors, we can obtain two subspaces:

the signal subspace, formed by the D eigenvectors corresponding to the most signi cant

eigenvalues; and the noise subspace, formed by the (M D) eigenvectors referring to the

noise eigenvalues of marginal magnitudes. Projecting the array manifolds into the noise

subspace results in the MUSIC pseudo-spectrum.

The DoA solution of the MUSIC algorithm consists of scanning the discretized

space of the angular parameters „ and , projected onto the noise subspace, looking for

maximum/minimum values of the MUSIC pseudo-spectrum PMUSIC(„, ) SCHMIDT,

1986 .

PMUSIC(„, ) =
1

a(„, )HENEH
Na(„, )

(2.7)

where EN is the (M M D) noise subspace of Rx, corresponding to the (M D) noise

eigenvectors.



Chapter 2. Basic Concepts of Array Signal Processing and Direction of Arrival Estimation 32

Exploring the orthogonality between the subspaces contained in the signal model

hypothesis, the minimum values of this projection in the signal subspace will correspond

to the maximum values in the signal subspace. The values of „ and corresponding to

these noise subspace minima/signal subspace maxima will correspond to the DoAs of the

D sources to be resolved.

A version of this algorithm, ROOT-MUSIC BARABELL, 1983, which replaces the

search for minima and maxima in a pseudo spectrum with the resolution of the roots of

the polynomial of the denominator of the pseudo spectrum and the resolution of the D

roots (referring to D SOIs) closest to the unit radius circle. This algorithm will be further

explored in Section 3.3 .
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3 ELEMENT-SPACE AND BEAMSPACE UNIFORM CIRCULAR

ARRAY SIGNAL MODEL

In this chapter, we derive the Phase-Modes beamspace transformation, allowing

the use of the Root-MUSIC algorithm with a UCA and the techniques for mitigating

the e ects of Small Sample Support and reduced quantity of sensors, to be presented in

Chapter 4.

We start this derivation with an example of a DoA estimation system employing

a UCA, as depicted in Fig. 3. Although we represent only six sensors in this UCA, the

formulation that follows is valid for a generic case of M sensors. The diagram in Fig. 3

would be more useful to an audio system as the A/D converter is placed immediately

after the sensor. In an RF DoA estimation system, the front-end would include a down-

converter such that the signal would be digitized in a much lower frequency, generating,

for instance, a complex bandbase digital signal. In this system, the modulated signal of

Figure 3 – An example of an acoustic DoA estimation system with a UCA. The m-th
signal is processed by a bandpass lter (block PBF) and made analytical by
means of Hilbert transform (block H).

each sensor, assumed narrowband (NB) with a central frequency fo, according to Eq. (2.1),

is synchronously digitized, band-pass ltered, and fed to a Hilbert Transform box (H box

in the gure), resulting in an analytic NB signal.
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3.1 Element-Space UCA Signal model

In this section, we start the discussion of a UCA signal model with the snapshot

vector given as

x(k) =

S

WWWWWWU

x1(k)

x2(k)
...

xM (k)

T

XXXXXXV
. (3.1)

The signal from the m-th sensor xm(t), assuming we have only one incoming signal,

the Signal of Interest (SoI), hitting the array from azimuth „DoA = „1 and zenith DoA = 1,

as in Fig. 3, after the A/D converter, could be represented by

xm(k) = s(k)ejÊoke j o tm , (3.2)

where o = 2 fo, Êo = o

fs
, fs being the sampling frequency, and tm corresponds

to the delay (regarding a given reference, such as the position of a sensor) observed

in the m-th sensor. We have also assumed that the maximum frequency of the signal

being modulated, s(t), is much lower than the operating frequency fo. From Fig. 3, we

can represent the unit vector in the propagation direction of the wavefront as a1 =

[sin ( 1) cos („1) sin ( 1) sin („1) cos ( 1)]
T, such that, considering the position vector

for each m-th sensor as

pm = R
5
cos((m 1)

2
M

) sin((m 1)
2
M

) 0
6T
, (3.3)

with m œ [1, 2, · · · ,M ], we can write, taking the center of the UCA as the reference, the

delay tm as TREES, 2007

tm =
pT
ma1
c
, (3.4)

c being the propagation speed of the wavefront. From Eqs. (3.2) and (3.4), we can write

xm(k) = s(k)ejÊokej
2 R sin( 1)[cos(„1) cos( 2 (m 1)

M
)+sin(„1) sin(

2 (m 1)
M

)], (3.5)

which, after some straightforward geometric manipulation, yields the expression for each

entry of the UCA array manifold vector as

xm(k) = s(k)ejÊokej
2 R sin( 1) cos(„1

2 (m 1)
M

). (3.6)

Therefore, considering the simple case of a single wavefront hitting the elements of
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the UCA and no background noise, the snapshot in Eq. (3.1) could be written as

x(k) = s(k)ejÊok

S

WWWWWWU

ej
2 R sin( 1) cos(„1)

ej
2 R sin( 1) cos(„1

2
M

)

...

ej
2 R sin( 1) cos(„1

2 (M 1)
M

)

T

XXXXXXV

¸
a(„1, 1)

, (3.7)

where a(„1, 1) is the UCA 2-D array manifold vector. Now considering D emitters and

uncorrelated background noise, we may express the snapshot as follows

x(k) = As(k) + n(k), (3.8)

where A =
Ë
a(„1, 1) · · · a(„D, D)

È
is theM D array manifold matrix with columns

being D array manifold vectors, s(k) is the D 1 signal vector in the center of the array,

given as (assuming, for simplicity, synchronized carriers)

s(k) = ejÊok

S

WWWU

s1(k)
...

sD(k)

T

XXXV , (3.9)

and n(k) =
Ë
n1(k) · · · nM (k)

ÈT
is the M 1 uncorrelated background noise vector,

with noise samples from each sensor. The d-th array manifold vectors are expressed as

a(„d, d) =

S

WWWWWWU

ej
2 R sin( d) cos(„d)

ej
2 R sin( d) cos(„d

2
M

)

...

ej
2 R sin( d) cos(„1

2 (M 1)
M

)

T

XXXXXXV
. (3.10)

With the previous model, it is easy to obtain the element-space covariance matrix

Rx = E[x(k)xH(k)] as

Rx = ARsA
H + ‡2IM , (3.11)

where Rs = E[s(k)sH(k)] is the covariance matrix of the signal input in the center of the

array and Rn = E[n(k)nH(k)] = ‡2IM is the covariance matrix of the presumed additive

white Gaussian (AWG) noise process.

3.2 Phase Modes-based Beamspace UCA Signal Model

In this section, we follow the beamspace transformation proposed in HICKMAN;

NEFF; TILLMAN, 1961; LONGSTAFF; CHOW; DAVIES, 1967 to change the structure

of the UCA manifold using the concept of phase mode excitation.



Chapter 3. Element-space and Beamspace Uniform Circular Array Signal Model 36

The objective of such transformation is to map the element space array manifold

into an alternative beamspace form. The beamspace signal model should have a di erent

expression, more suitable for a particular objective while retaining precision in describing

the receiving characteristics of the array. Simpli cation in the signal model expression

in beamspace and dimensional reduction in beamspace mapping are both also desirable.

Finally, the objective of the transformation is to alter the signal model to a suitable form

to employ the Root-MUSIC algorithm for azimuth DoA estimation without a grid search.

This suitable form is the center-Hermitian Vandermonde structure such as

a(„) = [e iv(„), e( i+1)v(„), . . . , 1, . . . e(i 1)v(„), eiv(„)]T, (3.12)

with i œ N.

The beamspace technique employs Fourier analysis of the excitation function of an

array (excitation function, in the case of an exclusively passive array, being the output

signal of each sensor excited by the impinging wavefront). The decomposition of the

discrete excitation function in a nite number of harmonics via Discrete Fourier Transform

(DFT) allows the transformation of the M 1 element-space array manifold a(„d, d) into

a (2N + 1) 1 beamspace array manifold with an advantageous Vandermonde structure

for the azimuth parameter.

As shown in the previous section, the steering vector corresponding to a wavefront

hitting the UCA with azimuth „, considering a given zenith angle , may be expressed as

a(„) =

S

WWWWWWU

ejY R̄ cos(„)

ejY R̄ cos(„ 2
M

)

...

ejY R̄ cos(„
2 (M 1)

M
)

T

XXXXXXV
, (3.13)

with Y = 2 / being the wavenumber and R̄ = R sin . The previous expression is not con-

venient for determining the incoming azimuth using, for instance, with the ROOT-MUSIC

algorithm. To overcome this limitation and avoid a two-dimension grid search SCHMIDT,

1986; ZOLTOWSKI; KAUTZ; SILVERSTEIN, 1993; AKIYAMA; YAMAOKA; HAMADA,

1999, phase mode excitation theory-based beamspace transform can be employed. The

beamspace transform is based on the spectral analysis of the output signal of each sensor

of the array. We start the formulation by presenting the mathematical basis of this method,

the Jacobi-Anger expansion ABRAMOWITZ; STEGUN, 1964. This expansion is the

Fourier series representation of a complex exponential in the form

eu cos(„) =
Œÿ

n= Œ

jnJn(u)ejn„, (3.14)

where Jn( ) being the Bessel function of the rst kind and order n. Eq. (3.14) already

suggests a manner to transform the array manifold into a Vandermonde structure, as
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required for applying the Root-MUSIC algorithm. Before dealing directly with a sampled

circular aperture (a UCA), we rst consider a continuous circular aperture (akin to a UCA

with an in nite number of sensors), with “ being the angular position of sensors œ [0, 2 ].

Any output signal will be periodic with period 2 MATHEWS; ZOLTOWSKI, 1994 and

can be expanded by a Fourier series

s“(k) =
Œÿ

n= Œ

cnejn“e
j[Y R̄ cos(„ “)]. (3.15)

A phase mode is then de ned as wn(“) = cnejn“e
j[Y R̄ cos(„ “)]. The output signal sn(k)

referring to the excitation of the continuous aperture by the n-th phase-mode wn(“) is

given by

sn(k) =
1
2

2

0
wn (“) e

j[Y R̄ cos(„ “)]d“. (3.16)

By applying the Anger equation and the equivalence with Bessel functions of the

rst kind ABRAMOWITZ; STEGUN, 1964, we conclude that

sn(k) = jnJn
1
Y R̄

2
ejn„. (3.17)

Now, we consider the sample circular aperture of a UCA with M sensors. Applying

the Jacobi-Anger expansion to the output signal of the m-th sensor and inspecting Eq.

(3.6), we nally have an expression for each sensor output as

x̄m(k) = s(k)
Œÿ

n= Œ

jnJn
1
Y R̄

2
ejn„e j( 2 n(m 1)

M ). (3.18)

Eq. (3.18) already suggests that the output signal of the sampled circular aperture

is very similar to a DTFT of the output signal of a continuous circular aperture in Eq.

(3.17)

In the beamspace transform, we extend the spectral analysis to the sampled aperture

via DFT, aiming at the centre-Hermitian structure. Taking the N -point DFT of the signal

model of Eq. (3.6), the output signal of each sensor can be written as

x̄n(k) = s(k)
1Ô
M

M 1ÿ

m=0

cnej
2 nm
M . (3.19)

Now, applying the Jacobi-Anger expansion in Eq. (3.19) yields the n-th phase mode as

x̄n(k) = s(k)
1Ô
M

Œÿ

q= Œ

M 1ÿ

m=0

jqJq
1
Y R̄

2
e(jq„)e(

j2 qm

M )e(
j2 nm

M ). (3.20)

In the following formulations, we apply several simpli cations to Eq. (3.20). The

rst of them is through analyzing the inner summation WAX; SHEINVALD, 1994



Chapter 3. Element-space and Beamspace Uniform Circular Array Signal Model 38

M 1ÿ

m=0

e j2 qm/Mej2 nm/M =

Y
]

[
M, if q=n + lM, l being an integer,

0, otherwise.
(3.21)

Substituting Eq. (3.21) in Eq. (3.20), we can simplify the inner summation and retain only

the outer summation in the form of a Fourier series and Jacobi-Anger expansion as Eq.

(3.18)

x̄n(k) =s(k)
Ô
M

Œÿ

l= Œ

jn±lMJn±lM
1
Y R̄

2
e(j(n±lM)„)

=s(k)
Ô
M

Ë
jnJn

1
Y R̄

2
e(jn„)

Œÿ

l=1

1
jn+lMJn+lM

1
Y R̄

2
e(j(n+lM)„)

+jn lMJn lM

1
Y R̄

2
e(j(n lM)„)

2È
.

(3.22)

The complex coe cients of the Fourier series of Eq. (3.18) are given by the Bessel

functions of the rst kind. Due to the behavior of these functions in relation to their

arguments, we show that only a limited number of harmonics (phase modes) with signi cant

amplitudes can be excited by the circular aperture of the UCA HONG; TEWFIK, 1991;

GOOSSENS; ROGIER; WERBROUCK, 2008. Note that the zenithal angle œ [0, /2],

and that the arguments of the Bessel functions œ [0, 2 R/ ]. The Bessel functions where

the order exceeds their argument yield small amplitudes and, in this manner, we conclude

that the highest order phase-mode N with signi cant amplitude will be the largest integer

smaller than the maximum argument 2 R/ .

As shown in Fig. 4, when the order of the function exceeds the argument, the

amplitude is small for that argument. In this example, with R = , Y R̄ = 2 , is the

maximum argument, when sin = 1 (SoI and UCA in the same plane). Therefore, regarding

this example, the highest order phase mode excitation by the UCA will be N = 6.

Further simpli cations can be made by taking advantage of the behavior of the

Bessel functions of the rst kind depicted in Fig. 4. Making the number of sensor M much

larger than Y R = 2 R/ (the maximum argument for the Bessel functions) in Eq. (3.22),

every phase mode in the form
Ô
M jq±lMJq±lM

1
Y R̄

2
e(j(q±lM)„), for l Ø 2, has negligible

amplitudes and can be omitted. In this manner, only the modes with l = 0 e l = 1 are

signi cant.

x̄n(k) =s(k)
Ô
M

Ë
jnJn

1
Y R̄

2
e(jn„)

+ jn+MJn+M
1
Y R̄

2
e(j(n+M)„)

+jn MJn M

1
Y R̄

2
e(j(n M)„)

È
(3.23)

Here, we make two assumptions: if we assume that the number of sensor M

is much larger than the number of phase modes n, the second portion of Eq. (3.23),
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Figure 4 – Behavior of the Bessel functions and dependence on the zenith parameter .
The blue dashed curves are Bessel functions os the rst kind of order 0 to 5,
which the order n is smaller than the maximum argument 2 . The black curve
is the Bessel function of highest order less than the maximum argument. The
red dotted curves are Bessel functions which the order n is larger than the
maximum argument.

jn±MJn±M
1
Y R̄

2
e(j(n±M)„) ¥ 0, and, consequently, x̄n(k) ¥ s(k)

Ô
M [jnJn(Y R̄)e(jn„)].

On the other hand, if we assume that the number of phase modes n is large enough,

jnJn(Y R̄)e(jn„) ¥ 0 and x̄n(k) ¥ s(k)
Ô
M [jn±MJn±M(Y R̄)e(j(n±M)„)] HONG; TEWFIK,

1991; GOOSSENS; ROGIER; WERBROUCK, 2008. Finally, we have a good approxi-

mation for the expression of each entry x̄n(k) of the output signal vector in beamspace

x̄(k) as a complex amplitude multiplying a single Bessel function of the rst kind and a

complex exponential.

x̄n(k) = s(k)
Ô
M jnJn

1
Y R̄

2
ejn„,

7
M 1

2

8
Æ n Æ

7
M 1

2

8
, (3.24)

where Â(M 1)/2Ê denotes the largest integer smaller or equal to (M 1)/2.

With n œ [ N, . . . , 1, 0, 1, . . . , N ], Eq. (3.24) not only de nes the form of the

entries of vector x̄(k) but its dimension by de ning the number n of phase modes involved

in the beamspace transformation, where N = Â(M 1)/2Ê. Through this formulation,

we manage to transform the M 1 element space output signal vector x(k) into the

(2N + 1 1) beamspace counterpart x̄(k), with 2N + 1 ÆM .

Determining the number of phase modes, however, deserves further consideration.

From the very formulation and simpli cations of the phase modes-based beamformer, we

have two di erent criteria. Based on the approach of HONG; TEWFIK, 1991, aiming

for no dimensional reduction (odd number M of sensors) or one-dimensional reduction

(M even) in the dimensions of the beamspace array manifold in comparison with the
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Figure 5 – Phase modes-based beamspace transform diagram.

element-space one, the criterion is Â(M 1)/2Ê (for M odd, 2N + 1 =M and for M even,

2N + 1 =M 1). On the other hand, the behavior of Bessel functions of the rst kind

and the consequent simpli cation of Eq. (3.23) states that M >> 2 R/ . A satisfactory

merging of these two criteria can be N being the minimum between Â(M 1)/2Ê and

2 R/ HICKMAN; NEFF; TILLMAN, 1961.

A closer look in Eq. (3.22) eludes an additional marginal amplitude criterion. Each

phase mode xn(k) is theoretically expressed by an in nite summation of Bessel functions.

The choice of n, the number of phase modes, that maps the array in beamspace should

be such that each x̄n(k) is de ned by a single term jnJn
1
Y R̄

2
e(jn„); and all additional

terms jn+lMJn+lM
1
Y R̄

2
e(j(n+lM)„) should have negligible amplitude contributions WAX;

SHEINVALD, 1994. In other words, n should be such that the dominant term in Eq.

(3.22) corresponds to l = 0. By taking the immediate additional terms (making l = ±1), a

suitable encompassing criterion will be

2 R
< n Æ

E
(M 1)

2

F

,
|Jn±M(Y R̄)|
|Jn(Y R̄)|

< ‘, (3.25)

for an arbitrary ‘.

The implementation of such transformation is represented in Algorithm 1. The

beamspace transformation matrix W, which may be expressed as an M (2N + 1) spatial

DFT sub-matrix, where each column represents the n-th excitation mode vector wn, is

de ned as

wn =
1Ô
M

Ë
1 e j2 n

M · · · e j2
n(M 1)

M

ÈT
. (3.26)

The inner product of wn and the array manifold vector a(„) is written as

wH
na(„) =

1Ô
M

M 1ÿ

m=0

ej2
mn
M ejY R̄ cos(„ 2 m

M
). (3.27)
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Employing the Jacobi-Anger expansion in Eq. (3.27), it then can be approximated as

wH
na(„) ¥

Ô
M jnJn

1
Y R̄

2
ejn„, (3.28)

with n from N to N , N being the minimum between Â(M 1)/2Ê and 2 R/ . Given

N , we form the M (2N + 1) matrix W given as

W = [w N · · · w 1 w0 w1 wN ] . (3.29)

A good approximation in Eq.(3.28) would result in

ā(„) = WHa(„) ¥ Jv(ej„) =
Ô
M

S

WWWWWWWWWWWWWWWWU

j NJ N(Y R̄)e jN„

...

j 1J 1(Y R̄)e j„

J0(KR̄)

j1J1(Y R̄)ej„
...

jNJN(Y R̄)ejN„

T

XXXXXXXXXXXXXXXXV

, (3.30)

where J is a diagonal matrix whose elements are
Ô
M jnJn(KR̄), n varying from N to

N , and vector v(„) correspons to

v =

S

WWWWWWWWWWWWWWWWU

z N

...

z 1

1

z
...

zN

T

XXXXXXXXXXXXXXXXV

, (3.31)

with z = ej„.

With the beamspace transformation of Eq. (3.27) and the approximations of Eq.

(3.28), we can write the signal model of the (2N + 1) 1 beamspace array manifold as

x̄(k) = WHx(k) = WHA(„)s(k) + WHn(k) = Ā(„)s(k) + n̄(k), (3.32)

where Ā(„) is the beamspace array manifold for the azimuth parameter and n̄(k) is the

beamspace noise vector, addressed in Appendix B.

Recalling Eq. (3.11), the expression for the beamspace covariance matrix Rx̄ =

E[x̄(k)x̄H(k)] becomes

Rx̄ = WHRxW = WHA(„)RsA
H(„)W + Rn̄, (3.33)

where Rn̄ = E[n̄(k)n̄H(k)] = WHRnW is the beamspace noise covariance matrix.



Chapter 3. Element-space and Beamspace Uniform Circular Array Signal Model 42

3.3 ROOT-MUSIC Solution

Recalling the element-space spectrum of the MUSIC algorithm, the directions of

arrival of D sources are obtained by choosing the D maximum peaks:

P („) =
1

aH(„)ENEH
Na(„)

, (3.34)

where EN corresponds to the noise eigenvectors of the element-space covariance matrix

Rx, according to Algorithm 2. When using the beamspace transformation matrix W of

Eq. (3.29) and recalling Eq. (3.32) and (3.33), we have the beamspace MUSIC spectrum,

given as

P̄ („) =
1

āH(„)ĒNĒH
Nā(„)

, (3.35)

where ā(„) = WHa(„) is given in Eq. (3.30) and ĒN is the (2N +1) (2N +1 D) matrix

containing the 2N + 1 D vectors that span the beamspace noise subspace of Rx̄. The

denominator of P̄ („) can then be represented as a polynomial f(z) evaluated in z = ej„:

f(z) = vH(z)JĒNĒ
H
NJ¸

B

v(z)

= vH(z)Bv(z). (3.36)

If we are searching for (D) peaks in P̄ („), we can search for (D) zeros of f(z) positioned

closest to the unit circle. This is possible due to the elements of matrix B being numbers

(the variable is z). We note that, when z = ej„, then zH = 1/ej„ such that we nd all zeros

of

f(z) = vT(1/z)Bv(z), (3.37)

and select those D closest to and inside the unit circle to obtain the estimated DoA, as in

Algorithm 3. The coe cients of f(z) BABU, 1991 can be calculated with

f(z) =
N 1ÿ

k= N+1

ckz
k, (3.38)

where ck is the summation of the entries of the k-th diagonal of the matrix B and k = 0

corresponds to the main diagonal, k > 0 corresponds to diagonals above the main, and

k < 0 corresponds to the ones below. Since B is symmetric about the main diagonal, it is

possible to calculate the coe cient just for k Ø 0 or k Æ 0 and rearrange them to obtain

the other coe cients. Let zd be one of these zeros; knowing that zd = ej„d when zd belongs

to the unit circle or |zd|ej„d when close to the unit circle, we obtain

„d = angle(zd). (3.39)

In order to depict the comparison between element space and beamspace array

manifold vector and the accuracy of the phase modes transform, in Fig. 6-9 we have the 2-D
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MUSIC pseudo-spectrum in element space and beamspace, for a 16 sensor UCA (11 phase

modes) zenith for two stochastic uncorrelated narrowband sources: SoI („SoI = 37.9¶ and

SoI œ {10¶, 90¶}) and interferer („Int = 120.5¶ and Int = 50.7¶) with central frequencies

of 6 kHz and 7 kHz. Sample support of 1,000 and with 10 snapshots, R = , SIR of 3 dB,

and AWGN with SNR of 10 dB.

Figure 6 – Element space MUSIC pseudo-spectrum. 16 sensor UCA resolving two narrow-
band sources with angular positions: „SoI = 37.9¶, SoI = 57.7¶, „Int = 120.5¶

and Int = 50.7¶. SIR of 3 dB, immerse in isotropic AWGN with SNR of 10 dB.
Sample support of 1,000 snapshots.

The pseudo-spectra in element space and beamspace provide very close 2-D DoA

solutions, depicting the accuracy of the beamspace transform for large and small sample

support.
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Figure 7 – Beamspace MUSIC pseudo-spectrum. 16 sensor UCA mapped in beamspace
by 11 phase modes, resolving two narrowband sources with angular positions:
„SoI = 37.9¶, SoI = 57.7¶, „Int = 120.5¶ and Int = 50.7¶. SIR of 3dB, immerse
in isotropic AWGN with SNR of 10 dB. Sample support of 1,000 snapshots.

Figure 8 – Element space MUSIC pseudo-spectrum. 16 sensor UCA resolving two narrow-
band sources with angular positions: „SoI = 37.9¶, SoI = 57.7¶, „Int = 120.5¶

and Int = 50.7¶. SIR of 3 dB, immerse in isotropic AWGN with SNR of 10 dB.
Small sample support of 10 snapshots.
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Figure 9 – Beamspace MUSIC pseudo-spectrum. 16 sensor UCA mapped in beamspace
by 11 phase modes, resolving two narrowband sources with angular positions:
„SoI = 37.9¶, SoI = 57.7¶, „Int = 120.5¶ and Int = 50.7¶. SIR of 3 dB, immerse
in isotropic AWGN with SNR of 10 dB. Small sample support of 10 snapshots.

3.4 Decoupled Beamspace Root-MUSIC and Spectral MUSIC DoA

Estimation

Beamspace Root-MUSIC algorithms deal with the Vandermonde-structured portion

of the beamspace array manifold. This portion is exclusively azimuth-dependent. The

zenith-dependent portion does not have a Vandermonde structure. Therefore, zenith DoA

estimation can not resort to polynomial rooting. We show a simple two-step scheme for

2-D DoA in Algorithm 4. First, the azimuth DoA is estimated via Root-MUSIC, assuming

an arbitrary ini. Second, we perform D 1-D Spectral MUSIC searches through the zenith

angle parameter œ [0, /2].

The initial zenith angle ini for each source is considered previously estimated,

chosen arbitrarily or the array and the sources are considered in the same plane (zenith

angle = 90¶), and the 2-D DoA estimation is not explicitly explored. This scheme bene ts

from the aspects of beamspace Root-MUSIC and associated techniques and resolves 2-DoA

with greatly reduced computational e ort compared with 2-D Spectral MUSIC.

Fig. 11-14 depict a single trial of our decoupled 2-D DoA estimation in the same

condition of Section 3.2 for ini = 90¶. In Fig. 11 and 13 we have the azimuth DoA solution

via Root-MUSIC in the z-plane, where the DoAs are the two roots closest to the unit

circle. With these two azimuth solutions, we proceed to a 1-D search ( -only) spectral

MUSIC solution for the azimuth parameter, as shown in Fig. 12 and 14. These results were
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Figure 10 – Our UCA 2-D DoA approach diagram.

obtained from a simulation with the following parameters: Two stochastic and uncorrelated

narrowband sources with angular positions: SoI with „SoI = 37.9¶, SoI = 57.7¶, and

Interferer with „Int = 120.5¶, Int = 50.7¶ with central frequencies of 6 kHz and 7 kHz.

SIR of 3 dB, immerse in isotropic AWGN with SNR of 10 dB.

Figure 11 – Z-plane Root-MUSIC azimuth solution. 16 sensor UCA mapped in beamspace
by 11 phase modes, resolving two narrowband sources with angular positions
„SoI = 37.9¶ and „Int = 120.5¶. SIR of 3 dB and SNR of 10 dB. Sample
support of 1,000 snapshots.
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Figure 12 – 1-D search Spectral MUSIC zenith solution. 16 sensor UCA, resolving two
narrowband sources with angular positions SoI = 57.7¶ and Int = 50.7¶. SIR
of 3 dB and SNR of 10 dB. Sample support of 1,000 snapshots.

Figure 13 – Z-plane Root-MUSIC azimuth solution. 16 sensor UCA mapped in beamspace
by 11 phase modes, resolving two narrowband sources with angular positions
„SoI = 37.9¶ and „Int = 120.5¶. SIR of 3 dB and SNR of 10 dB. Small sample
support of 10 snapshots.

This scheme bene ts from the aspects of beamspace Root-MUSIC and associated

techniques and resolves 2-DoA with greatly reduced computational e ort compared with

2-D Spectral MUSIC.

Additionally, the uncoupled DoA estimation with Spectral MUSIC for zenith
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Figure 14 – 1-D search Spectral MUSIC zenith solution. 16 sensor UCA, resolving two
narrowband sources with angular positions SoI = 57.7¶ and Int = 50.7¶. SIR
of 3 dB and SNR of 10 dB. Small sample support of 10 snapshots.

estimation counts with the bene cial feature that errors in azimuth estimation, up to a

certain degree, do not have a sensible e ect in zenith estimation, as represented graphically

in Figs. 15 and 16. There, we can see that, for an appreciable interval of azimuth angles,

their respective Spectral MUSIC zenithal solutions are very similar. This behavior has a

pronounced positive impact in the presence of limiting factors (reduced number of sensors

and small sample support), as will be addressed in Chapter 4. Limited sampling and

mitigation techniques have larger e ects on azimuth DoA, as deal mainly with beamspace

Root-MUSIC algorithm. Consequently, errors in azimuth estimation do not propagate to

zenith estimation directly, as corroborated by the smaller estimation errors in zenith DoA

in the results in Sections 5.1 and 5.2.

3.5 Non-Isotropic Zenithal DoA Behavior

The planar geometry of the UCA results in zenithal non-isotropic behavior, which

can a ect the accuracy of azimuth and zenith DoA estimations. As the zenithal angle of a

source progressively approaches the array plane (as it increases), the estimation of zenith

DoA improves RUDGE, 1982. At the same time, we have similar behavior with azimuth

DoA, where, as the source’s zenithal angle approaches the array plane, the azimuth DoA

also improves. These e ects suggest an optimum zenithal sector of larger zenithal angles

(around the array plane) that provides accurate 2-D DoA estimation.

Fig. 17-20 illustrate these e ects for the cases of single and double sources, using the
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Figure 15 – 3-D representation of an angular portion of element-space 2-D MUSIC pseudo-
spectrum. 16 sensor UCA, SIR of 3 dB, and SNR of 10 dB. Resolving two
sources with angular positions „SoI = 37.9¶, SoI = 57.7¶, „Int = 120.5¶ and
Int = 50.7¶. Small sample support of 10 snapshots.

Figure 16 – Visual representation of the e ects of azimuth DoA in zenith DoA estimations.
Element-space spectral MUSIC 2-D DoA estimation. 16 sensor UCA, SIR of 3
dB, and SNR of 10 dB. Sources simulated angular positions are „SoI = 37.9¶,
SoI = 57.7¶, „Int = 120.5¶ and Int = 50.7¶ and small sample support of 10

snapshots. Filled lines indicate zenith DoAs SoI and Int and dashed lines
represent intervals of azimuth DoA errors that have marginal e ects on zenith
DoA estimation accuracy.
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DoA estimation method described in Section 3.4. It shows the results of DoA estimation

error of a 16 sensor UCA (11 phase modes) zenith for one and two sources: SoI

(„SoI = 37.9¶ and SoI œ [10¶, 90¶]) and interferer („Int = 120.5¶ and Int = 50.7¶). We

performed 1,000 independent runs of 1,000 snapshots each, R = , SIR of 3 dB, and

AWGN with SNR of 5 dB.

From these gures, we conclude that the absolute DoA error tends to decrease with

increasing source zenithal angle. For the two sources simulation, this behavior is altered

around the zenith of the Interferer, set to 50.7°, compromising mainly azimuth estimation

accuracy.
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Figure 17 – Non-isotropic zenith-dependant DoA behavior. 16 sensor UCA, mapped in
beamspace by 11 phase modes, resolving single and two narrowband sources
with angular positions: „SoI = 37.9¶, SoI œ [10¶, 90¶], „Int = 120.5¶ and
Int = 50.7¶. Note how the zenithal proximity with the Interferer a ects

azimuth DoA.

In Fig. 19 and 20, small sample support has additional e ects on non-isotropic

behavior, as well as the mitigating techniques in Section 4.2. As expected, we have less

accurate DoA estimations in all cases, where azimuth DoA su ers greater e ects. The

compromise between zenithal angle and DoA estimation is less severe. The negative impact

of the Interferer is also less severe.

RUDGE, 1982; TREES, 2007; WAITE, 2002; MARAGE; MORI, 2013 already

indicate the behavior obtained in our simulations. However, it is important to mention as

it will in uence all other results presented in this work, especially regarding the e ects

of an SoI and Interferer with small vertical separation, whit both zenithal angles close

together.
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Figure 18 – Non-isotropic zenith-dependant DoA behavior. 16 sensor UCA, mapped in
beamspace by 11 phase modes, resolving single and two narrowband sources
with angular positions: „SoI = 37.9¶, SoI œ [10¶, 90¶], „Int = 120.5¶ and
Int = 50.7¶. With better SNR and SIR, the e ects of zenithal proximity are

more evident.
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Figure 19 – Small Sample Support, non-isotropic zenith-dependant DoA behavior. 16
sensor UCA, mapped in beamspace by 11 phase modes, resolving single and
two narrowband sources with angular positions: „SoI = 37.9¶, SoI œ [10¶, 90¶],
„Int = 120.5¶ and Int = 50.7¶. Reduced sample support exacerbates the
previous behavior.

The next chapter assesses DoA estimation with reduced spatial and temporal

sampling. A reduced number of sensors leads to inaccurate beamspace mapping, so we
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Figure 20 – Small Sample Support, non-isotropic zenith-dependant DoA behavior. 16
sensor UCA, mapped in beamspace by 11 phase modes, resolving single and
two narrowband sources with angular positions: „SoI = 37.9¶, SoI œ [10¶, 90¶],
„Int = 120.5¶ and Int = 50.7¶. Better SNR and SIR slightly made up for
negative small sample support e ects.

discuss the incorporation of additional phase modes. Small sample support, as well as

low SNR correlated signal sources, lead to subspace leakage, so we assess methods of

conditioning the covariance matrix to mitigate the negative e ects of these limiting factors.
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4 REDUCED SPATIAL AND TEMPORAL SAMPLING DOA

ESTIMATION

In this chapter, we assess the performance of a Uniform Circular Array featuring a

reduced number of sensors and using sample support comprised of only a few snapshots.

We begin by analyzing the limitations of the phase-mode transformation in the context

of a uniform circular array with a reduced number of sensors. Next, we address the issue

of having limited sample support, which generates additional challenges, followed by a

summary of the techniques that can be used to mitigate the degradation caused by the

two aforementioned problems.

4.1 DoA Estimation With Reduced Quantity of Sensors

As shown in Section 3.2, speci cally in Eq. (3.25) and graphically in Fig. 4, the

number of phase modes capable of exciting a circular array with sensible amplitude depends

on Y R̄, which translates into operating frequency, radius, and number of sensors.

Figure 21 – Spatial aliased DoA estimation: additional phase modes incorporation diagram.

The number of phase modes must allow for precise description of the receiving

characteristics of the array in beamspace, otherwise, biased DoA estimations shall occur

GOOSSENS; ROGIER; WERBROUCK, 2008. The two criteria of Eq. (3.25) can con ict

when there are fewer sensors than required to having su cient phase modes and unbiased

estimations. With su cient sensors, each phase mode can be precisely expressed by a single

Bessel function of the rst kind WAX; SHEINVALD, 1994. For an insu cient number of
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sensors, which can be considered as a sparse array, indicated by the subscript (sp), Eq.

(3.24) does not hold and each phase mode is expressed more closely by Eq. (3.22).

Considering a sparse UCA with only Msp sensors, Msp < M , capable of exciting

only nsp = (2Nsp + 1) phase modes, with nsp < n, due to the reduced number of sensors.

However, the corresponding circular aperture (de ned by the radius and the operating

frequency) needs a larger number of sensors to be sampled without aliasing, resulting in

the need for (2N + 1) phase modes to express correctly the receiving characteristics in

beamspace.

The additional 2N 2Nsp phase modes required cannot be incorporated into the

reduced-dimension beamspace array manifold x̄sp(k) unless each entry x̄nsp
(k), nsp œ

[ Nsp, . . . , 1, 0, 1, . . . , Nsp], is expressed by more than one phase mode GOOSSENS;

ROGIER; WERBROUCK, 2008; LI; CHEN, 2016. The array manifold with additional

incorporated phase mode is speci ed by the subscript (ad).

According to Eq. (3.23), it is possible to make l ”= 0 and equals an integer that, by

expressing each x̄nsp
(k) by as many Bessel functions as necessary, ful lls the criteria of Eq.

(3.25). In this fashion, (2N + 1) phase modes are incorporated in x̄nsp
(k), even when it

has only (2Nsp + 1) < (2N + 1) entries, with each entry of x̄nsp
(k) expressed by

x̄nsp
(k) =s(k)

Ô
M

Ë
jnspJnsp

1
Y R̄

2
e(jnsp„)

+ j±(nsp+lMsp)J±(nsp+lMsp)

1
Y R̄

2
e(±j(nsp+lMsp)„)

È
,

(4.1)

with l such that nsp + lMsp = n.

Such a technique is implemented by constructing a phase mode incorporation

matrix H in the form

H =
5
D+

... I
... D

6
, (4.2)

where I is the (2Nsp + 1) identity matrix. D+ is a (2Nsp + 1) (N Nsp) matrix of the

(N Nsp) last columns of I that incorporate phase modes of the form

j(nsp+lMsp)J(nsp+lMsp)

1
Y R̄

2
e(j(nsp+lMsp)„); and D is a (2Nsp+1) (N Nsp) matrix of the

(N Nsp) rst columns of I that incorporate phase modes of the form

j(nsp lMsp)J(nsp lMsp)

1
Y R̄

2
e(j(nsp lMsp)„) for values of Nsp and N according to 3Nsp + 1 >

N > Nsp.

Also according to GOOSSENS; ROGIER; WERBROUCK, 2008, by incorporating

additional identity matrices, the form of matrix H for any values of N and Nsp can be

obtained. For example, when 5Nsp + 1 > N > 3Nsp + 1,

H =
5
D+

... I
... I

... I
... D

6
. (4.3)
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Next, we devise an example of the method for the particular case of the simulations

carried out in Subsection 5.1.1 and with a single source, D = 1. The sparse UCA has

an aperture that requires (2N + 1) = 11 phase modes, but the array possesses only 6

sensors, being capable of exciting only (2Nsp + 1) = 5 phase modes. Starting with the

ideal (theoretical) (2N + 1) candidate array manifold ā(„) and the (2Nsp + 1) 1 sparse

candidate array manifold āsp(„), we write

ā(„) =
Ë
J 5, J 4, . . . , J 1, J0, J1, . . . , J4, J5

ÈT
and (4.4)

āsp(„) =
Ë
J 2, J 1, J0, J1, J2

ÈT
, (4.5)

where Jn = jnJn(Y R̄)ejn„.

The incorporation matrix H has the form

H =

S

WWWWWWWWWU

0 0 0 1 0 0 0 0 1 0 0

0 0 0 0 1 0 0 0 0 1 0

1 0 0 0 0 1 0 0 0 0 1

0 1 0 0 0 0 1 0 0 0 0

0 0 1 0 0 0 0 1 0 0 0

T

XXXXXXXXXV

. (4.6)

The (2Nsp + 1) 1 array manifold with additional phase modes incorporated, āad(„) , is

obtained by

āad(„) = Hāsp(„)

=
Ë
(J 2 + J3), (J 1 + J4), (J 5 + J0 + J5), (J1 + J 4), (J2 + J 3)

ÈT
.

(4.7)

We can see that āad(„), despite having the same dimensions (2Nsp + 1) = 5, is

expressed by (2N + 1) = 11 phase modes, in comparison with āsp(„), which is expressed

by only (2Nsp+1) = 5 phase modes. In this manner, āad replaces āsd as the (2Nsp +1) = 5

array manifold vector.

According to Eq. (3.22) and (3.25), āad will map the array manifold in beamspace

with improved accuracy, minimizing the e ects of insu cient spatial sampling. Finally,

āad can be used to calculate the coe cients of Root-MUSIC as in Section 3.3, improving

estimations.
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4.2 DoA Estimation With Small Sample Support

Phase modes-based beamformer and root-MUSIC allow more computationally

e cient and less time-consuming DoA estimation. In this way, the detection and sampling

processes can be reduced as well, which translates into a reduced quantity of snapshots

for estimation. A less costly technique, such as root-MUSIC, can be paired with reduced

sample support for each DoA solution.

In practical situations, we are unable to obtain the true covariance matrix, due

to the nite quantity of input data. Consequently, only data-dependent estimations are

attainable HACKER; YANG, 2010, the sample covariance matrices, represented in this

Section onward by the superscript (ˆ).

To deal with this problem, several methods emulate the e ects of the temporal

averaging of the estimation with a large number of snapshots REDDY; REDDY, 1999;

LI; SU; WU, 2019. By presuming a suitable structure of the covariance matrix (according

to array and signal models), it is possible to condition the sample covariance matrix to

this suitable structure. Such conditioning goes through distinct methods for estimating

the covariance matrix in order to minimize the undesired e ects of an insu cient quantity

of snapshots.

Figure 22 – Small sample support DoA estimation diagram.
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4.2.1 Leakage Minimization: Covariance matrix revision via cross-correlation

estimation

For DoA estimation and, particularly subspace-based methods, the delity of the

sample covariance matrix with respect to the covariance matrix is critical. In cases of

low SNR or a small quantity of input data, the true and sample covariance matrices

may diverge considerably. A reduced number of snapshots can introduce a bias to the

solution. Residual components of cross-correlation between signal and noise samples, that

would fade with an increasing number of snapshots and, eventually, become negligible,

will remain signi cant for the reduced sample support case SHAGHAGHI; VOROBYOV,

2015; XINGXING et al., 2016; WEN; WANG, 2017 and the sample covariance matrix

would diverge from the covariance matrix.

The undesired residual components of cross-correlation can result in the signal and

noise subspaces of the covariance matrix not being perfectly orthogonal, with an overlap

(subspace leakage). This can considerably degrade the estimation of any subspace-based

methods. We can reduce this divergence by estimating the residual components and revising

the sample covariance matrix, utilizing initial DoA (containing errors) via a least squares

problem to estimate the residual and remove them, as shown in Algorithm 5.

Starting with Eq. (3.33), where the number of snapshots K æ Œ. For a nite

number of snapshots, we have the estimated beamspace sample covariance matrix R̂x̄

given as

R̂x̄ =
1
K

Kÿ

k=1

x̂(k)x̂H(k)

=
1
K

Kÿ

k=1

1
WHA(„)ŝ(k) + n̂(k)

2 1
WHA(„)ŝ(k) + n̂(k)

2H
.

(4.8)

Expanding the summation of outer products above yields

R̂x̄ =
1
K

Kÿ

k=1

1
WHA(„)ŝ(k) + n̂(k)

2 1
WHA(„)ŝ(k) + n̂(k)

2H

=WHA(„)R̂sA
H(„)W +WHR̂nW

+WHA(„)

C
1
K

Kÿ

k=1

ŝ(k)n̂H(k)

D

+

C
1
K

Kÿ

k=1

n̂(k)ŝH(k)

D

A(„)HW,

(4.9)

where R̂s = 1
K

qK
k=1 ŝ(k)ŝ

H(k) and R̂n = 1
K

qK
k=1 n̂(k)n̂

H(k) are element-space sample

covariance matrices of the reference signal in the center of the array and the noise process,

respectively.

The rst two terms os Eq. (4.9) are a good estimate of R̂x̄ in the sense that

R̂x̄ ¥ WHA(„)R̂sA
H(„)W + WHR̂nW and that R̂x̄ converges to Rx̄ when K æ Œ The



Chapter 4. Reduced Spatial and Temporal Sampling DoA Estimation 58

last two terms, the residual cross-correlation terms in Eq. (4.9) due to subspace leakage

SHAGHAGHI; VOROBYOV, 2015 are

T̂ = WHA(„)

C
1
K

Kÿ

k=1

ŝ(k)n̂H(k)

D

and

T̂H =

C
1
K

Kÿ

k=1

n̂(k)ŝH(k)

D

WA(„)H.

(4.10)

With su cient sample support, the rst two terms of Eq. (4.9) would be dominant and the

residuals of Eq. (4.10) would tend to zero. In other words, R̂x̄ tends to Rx̄ with growing

number of samples.

Initially, we utilize the reduced sample support beamspace covariance matrix R̂x̄

and Root-MUSIC to obtain initial coarse DoA estimations {„Õ1 . . . „ÕD}. These initial

DoAs are used to obtain a new revised beamspace array manifold WHA(„Õ). The revised

beamspace array manifold will be used to revise R̂x̄ SHAGHAGHI; VOROBYOV, 2015.

To achieve the revision, we rewrite the residual in terms of WHA(„Õ).

Starting by estimating the beamspace noise vector as n̂(k) = x̂(k) A(„Õ)ŝ(k) and

substituting in Eq. (3.32), we can estimate the signal ŝ(k) in the center of the array in

terms of WHA(„Õ) in a least square sense by minimizing the cost function

ŝ(k) = arg min
...x(k) WHA(„Õ)s

... , (4.11)

and we obtain the least squares estimation TREFETHEN; BAU, 1997 for ŝ(k) in function

of WHA(„Õ) as

ŝ(k) =
1
AH(„Õ)WWHA(„Õ)

2 1
AH(„Õ)Wx̄(k). (4.12)

Following, we substitute ŝ(k) of Eq. (4.12) in the expression for the residuals of Eq. (4.10).

We only develop formulations for T̂ and the expression for the other residual term is easily

obtainable.

T̂ = WHA(„Õ)

C
1
K

Kÿ

k=1

ŝ(k)n̂H(k)

D

= WHA(„Õ)
1
K

Kÿ

k=1

ŝ(k)
¸51

AH(„Õ)WWHA(„Õ)
2 1

ÂH(„Õ)Wx̄(k)
6

5
x̄H(k) x̄H(k)WHA(„Õ)

1
AH(„Õ)WWHA(„Õ)

2 1
AH(„Õ)W

6

¸
n̂H(k)=(x̂(k) WHA(„Õ)ŝ(k))H

.

(4.13)



Chapter 4. Reduced Spatial and Temporal Sampling DoA Estimation 59

By taking the terms independent of k out of the summation and rearranging the ones

inside, we obtain

T̂ = P

C
1
K

Kÿ

k=1

x̂(k)x̂H(k)
1
I(2N+1) P

2D

= PR̂x̄

1
I(2N+1) P

2
,

(4.14)

where P = WHA(„Õ)
1
AH(„Õ)WWHA(„Õ)

2 1
AH(„Õ)W is the estimated signal subspace

projector and I(2N+1) P is the respective orthogonal projector.

Calculating initial error estimates based on initial DoAs, we can write R̂Õ
x̄ as the

revised beamspace covariance matrix R̂x̄.

R̂Õ
x̄ = R̂x̄ µ

1
T̂ + T̂H

2
, µ œ [0, 1] . (4.15)

According to Eq. (4.9), µ = 1; however, the beamformer and the least-squares solution

of ŝ(k) retain a systematic error and the residual terms of Eq. (4.10) cannot be exactly

estimated. In order to select the optimum value µ, we calculate the updated DoAs

{„ÕÕ1 . . . „ÕÕD} (a second iteration of DoA estimation) for each discrete increment of µ

JIANG; MAO; LIU, 2016 and choose the optimum µ whose set of re ned DoAs minimizes

the element-space MUSIC spectrum

µ = arg min

......

Dÿ

d 1

a(µ, „ÕÕd)ENEH
NaH(µ, „ÕÕd)

......
, (4.16)

and the new DoAs are the ones calculated with the optimum µ.

4.2.2 Toeplitz Conditioning

Several techniques for reduced sample support estimated covariance matrix revision

are based on the expected Toeplitz form of the true covariance matrix and in ways to

approximate the estimated sample covariance matrix of this ideal Toeplitz structure

XIAOFEI et al., 2007; LI; CHEN, 2016; DEGEN, 2017; WEN; WANG, 2017. However,

this ideal structure corresponds to the true covariance matrix of a ULA under several

assumptions.

Initially, considering a ULA and assuming all its sensors are identical (with identical

receiving characteristics) and the absence of mutual coupling, its array manifold will have

a Vandermonde structure. Moreover, the correlation of two sensors separated by the same

Euclidean distance Îpi pjÎ will have the same statistics. Consequently, the correlation

Rx(xmi
, xmj

) of the output signal of two sensors mi and mj will be a function of only

Îpi pjÎ, independent of the individual positions pi and pj. In this manner, the true

covariance matrix will have a Toeplitz structure.
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However, the estimated sample covariance matrix, especially with reduced sample

support, can deviate considerably from the Toeplitz matrix, and methods of estimation

and conditioning such as spatial smoothing, in which the results are averaged in space

(instead of averaging in time, in case of su cient sample support) REDDY; REDDY,

1999 , and reducing the e ects of few temporal snapshots.

When considering UCAs, the element-space array manifold a(„, ) of Eq. (3.10)

does not have Vandermonde structure and the covariance matrix Rx of Eq. (3.11) is not

Toeplitz because Rx(xmi
, xmj

) = Rx(pi,pj) is no longer a function of Îpi pjÎ.

The phase mode transform maps the array manifold in beamspace and a portion of

the beamspace array manifold in Eq. (3.30) has a center-symmetric Vandermonde structure,

as a function of the azimuth angle , as in Eq. (3.31). By utilizing only the azimuth-

dependant portion of ā(„), we have a Vandermonde array manifold and corresponding

Toeplitz covariance matrix.

Lā(„) = v(ej„) =
Ë
z N . . . z 1, 1, z . . . zN

ÈT
, (4.17)

with z = ej„ and the matrix L = diag[(
Ô
M jnJn(KR̄)) 1].

Additionally, we can employ spatial smoothing to R̂x̄ to minimize the e ects of

reduced sample support and condition it to a Toeplitz form to obtain suitable azimuth

DoA estimations. The expression for the spatially-smoothed sample covariance matrix

R̂x̄ss is

R̂x̄ss =
1
2

1
R̂x̄ + G(2N+1)R̂

ú

x̄G(2N+1)

2
, (4.18)

where G(2N+1) is an anti-diagonal identity matrix and (ú) denotes complex conjugate

entries. Alternatively, the spatially-smoothed sample covariance matrix, as in DEGEN,

2017 and MARPLE, 2019, can be estimated by

R̂x̄ss =
1
M

1
XH

TXT

2
, (4.19)

where XT is a Toeplitz matrix constructed with the entries of each beamspace signal

output x̄(k) according to
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XT =

S

WWWWWWWWWWWWWWWWWU

x̄1(k) 0 . . . 0

x̄2(k) x̄1(k)
. . . ...

... x̄2(k)
. . .

...

x̄M (k)
...

. . . x̄1(k)

0 x̄M(k) . . . x̄2(k)
...

...
. . .

...

0 0
. . . x̄M (k)

T

XXXXXXXXXXXXXXXXXV

. (4.20)

The spatial smoothed, reduced sample support, beamspace sample covariance

matrix R̂x̄ss was estimated through space averaging, instead of time averaging, reducing

the undesirable e ects of the insu cient number of snapshots.

In the next chapter, we present thorough evaluations of the aspects of reduced

spatial and temporal sampling 2-D DoA estimation, both with isolated and simultaneous

limiting factors in several simulations. In the end, we consolidate our results with a

simulated underwater environment.
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5 EXPERIMENTAL RESULTS

This section addresses the 2-D DoA estimation of simulated and real-life underwater

acoustic signals obtained from a UCA. We show the e ects of limiting factors and the

bene ts of employing mitigating techniques. We also assess these behaviors in a simulated

shallow underwater environment that includes multipath propagation (due to surface and

bottom re ections) and the interaction between the non-isotropic characteristics inherent

to UCA and the e ects of limiting parameters MURMEL et al., 2022.

The standard parameters for both single multivariate and maritime environment

simulations are: UCA with radius R = , two stochastic, uncorrelated narrowband sources

with slight zenithal separation, SoI and Interferer, with central frequencies of 6 kHz and 7

kHz, respectively, immersed in isotropic AWGN. All results correspond to an average of

1,000 independent runs.

5.1 Simple Multivariate Evaluations

This subsection describes several UCA 2-D DoA scenarios by altering individual

limiting parameters (SNR, number of sensors, and quantity of snapshots). In all simulations,

the source’s angular positions are: SoI with „SoI = 37.9¶, SoI = 57.7¶, and Interferer with

„Int = 120.5¶, Int = 50.7¶.

5.1.1 Reduced Quantity of Sensors

For the case of a limited number of sensors, we de ned sample support of 1,000

snapshots. The UCA has six sensors with an element spacing of 1.047 , which results in

spatial sampling below the Nyquist rate and, consequently, spatial aliasing. Regarding the

beamspace transformation, it is able to map the array with only 5 phase modes (N = 2),

again, resulting in spatial aliasing. However, as shown in Figs. 23 and 24, incorporating

additional phase modes—up to 13—considerably improve the estimations. It is interesting

to notice that the absolute DoA estimation error does not behave linearly with an increasing

number of incorporated phase modes. In Figs. 23 and 24, we can see that incorporating 2

additional phase modes, bringing the total to 7, yields worst results than the original 5, as

the beamspace mapping with 7 phase modes is less accurate, despite having additional

incorporated phase modes.

According to the results in Figs. 23 and 24, the number of 11 phase modes was

selected for the next simulations. The results in Figs. 25-27 depict the comparison of the

estimation for the sparse UCA, mapped with only 5 phase modes and with a total of
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Figure 23 – Incorporated phase modes in 2-D DoA estimation. UCA having six sensors
with spacing of 1.047 , resolving two narrowband sources with angular po-
sitions „SoI = 37.9¶, SoI = 57.7¶, „Int = 120.5¶ and Int = 50.7¶. SIR of 3
dB and SNR of 10 dB. Sample support of 1,000 snapshots. Additional phase
modes are incorporated (from an initial 5 up to a total of 13). The vertical
dotted line indicates the optimum number of phase modes.

11 (5 + 6 incorporated) phase modes, as a function of the SNR, ranging from 3 dB to

15 dB. As expected, the accuracy of the estimations increases with increasing the SNR,

but this e ect appears to be slight for the two sources case and more prominent for the

single-source case. Additionally, it is clear the expressive improvements in DoA solutions

when additional phase modes are incorporated.
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Figure 24 – Incorporated phase modes in 2-D DoA estimation. UCA having six sensors
with spacing of 1.047 , resolving a single narrowband source with angular
positions „SoI = 37.9¶ and SoI = 57.7¶. SNR of 10 dB and sample support of
1,000 snapshots. Additional phase modes are incorporated (from an initial 5
up to a total of 13). The vertical dotted line indicates the optimum number
of phase modes.
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Figure 25 – Absolute 2-D DoA estimation error of the SoI source. UCA having six
sensors with spacing of 1.047 , resolving two narrowband sources with
angular positions „SoI = 37.9¶, SoI = 57.7¶, „Int = 120.5¶ and Int = 50.7¶.
SIR of 3 dB and SNR of 10 dB. Sample support of 1,000 snapshots. UCA
mapped in beamspace with 5 and 11 (5+6 incorporated) phase modes.
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Figure 26 – Absolute 2-D DoA estimation error of the Interferer source. UCA having
six sensors with spacing of 1.047 , resolving two narrowband sources with
angular positions „SoI = 37.9¶, SoI = 57.7¶, „Int = 120.5¶ and Int = 50.7¶.
SIR of 3 dB and SNR of 10 dB. Sample support of 1,000 snapshots. UCA
mapped in beamspace with 5 and 11 (5+6 incorporated) phase modes.
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Figure 27 – Absolute 2-D DoA estimation error of a single source. UCA having six
sensors with spacing of 1.047 , resolving two narrowband sources with
angular positions „SoI = 37.9¶, SoI = 57.7¶, „Int = 120.5¶ and Int = 50.7¶.
SIR of 3 dB and SNR of 10 dB. Sample support of 1,000 snapshots. UCA
mapped in beamspace with 5 and 11 (5+6 incorporated) phase modes.
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5.1.2 Small Sample Support

For the case of small sample support, the UCA has 16 sensors, mapped in beamspace

by 11 phase modes (N = 5) and with element spacing of 0.393 . Sample support ranges

from 1,000 down to a single snapshot. Figs. 28-33 depicts the in uence of decreasing sample

support, where the plots with SSS indicate the use of small sample support mitigation

(utilizing Toeplitz Conditioning and Leakage Minimization with µ = 0.9.) for two and a

single source cases and with individual results for both sources (Signal of Interest and

Interferer).

We can observe that the absolute error increases with the reduction of snapshots for

both SSS and non-SSS solutions. As seen in Figs. 28-33, small sample support techniques

can improve solutions and even extend the lower limits of sample support where both

DoAs can be accurately estimated. Additionally, we can see that the results obtained

in single source DoA estimation are better and less a ected by the reduction in sample

support.

Subspace leakage results in an unclear de nition of signal and noise eigenvectors and

di culties to sort signal eigenvectors by magnitude. Leakage Minimization addresses this

problem and is dependent of the factor µ in order to estimate and reduce cross-correlation

components, mitigating subspace leakage. In Figs. 34-36 we can see the e ects of the

factor µ in the mitigation of small sample support problem and the selection of the value

utilized in previous results. Note how the µ factor has a larger e ect in the Interferer DoA

estimation. With su cient sample support, the SoI is satisfactorily resolved independent

of µ. For small sample support, leakage minimization improves both SoI and Interferer

solutions.
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Figure 28 – Decreasing sample support in UCA 2-D DoA estimation. Depicting SoI source
estimation errors as a function of the number of snapshots, both in the presence
(SSS) and absence (no SSS) of small sample support mitigation. UCA with 16
sensors mapped by 11 phase modes. Resolving two narrowband sources with
angular positions „SoI = 37.9¶, SoI = 57.7¶, „Int = 120.5¶ and Int = 50.7¶.
SIR of 5 dB and SNR of 10 dB. µ of 0.9.
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Figure 29 – Decreasing sample support in UCA 2-D DoA estimation. Depicting Interferer
source estimation errors as a function of the number of snapshots, both in
the presence (SSS) and absence (no SSS) of small sample support mitigation.
UCA with 16 sensors mapped by 11 phase modes. Resolving two narrowband
sources with angular positions „SoI = 37.9¶, SoI = 57.7¶, „Int = 120.5¶ and
Int = 50.7¶. SIR of 5 dB and SNR of 10 dB. µ of 0.9.
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Figure 30 – Decreasing sample support in UCA 2-D DoA estimation. Depicting single
source estimation errors as a function of the number of snapshots, both in
the presence (SSS) and absence (no SSS) of small sample support mitigation.
UCA with 16 sensors mapped by 11 phase modes. Narrowband source with
angular positions „SoI = 37.9¶, SoI = 57.7¶. SIR of 5 dB and SNR of 10
dB. µ of 0.9.
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Figure 31 – Decreasing sample support in UCA 2-D DoA estimation. Depicting SoI source
estimation errors as a function of the number of snapshots, both in the presence
(SSS) and absence (no SSS) of small sample support mitigation. UCA with 16
sensors mapped by 11 phase modes. Resolving two narrowband sources with
angular positions „SoI = 37.9¶, SoI = 57.7¶, „Int = 120.5¶ and Int = 50.7¶.
SIR of 3 dB and SNR of 5 dB. µ of 0.9.
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Figure 32 – Decreasing sample support in UCA 2-D DoA estimation. Depicting Interferer
source estimation errors as a function of the number of snapshots, both in
the presence (SSS) and absence (no SSS) of small sample support mitigation.
UCA with 16 sensors mapped by 11 phase modes. Resolving two narrowband
sources with angular positions „SoI = 37.9¶, SoI = 57.7¶, „Int = 120.5¶ and
Int = 50.7¶.SIR of 3 dB and SNR of 5 dB. µ of 0.9.
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Figure 33 – Decreasing sample support in UCA 2-D DoA estimation. Depicting single
source estimation errors as a function of the number of snapshots, both in
the presence (SSS) and absence (no SSS) of small sample support mitigation.
UCA with 16 sensors mapped by 11 phase modes. Narrowband source with
angular positions „SoI = 37.9¶, SoI = 57.7¶. SIR of 3 dB and SNR of 5
dB. µ of 0.9.
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Figure 34 – E ects of factor µ in small sample support UCA 2-D DoA estimation. 16 sensor
UCA mapped in beamspace by 11 phase modes. Resolving two narrowband
sources with angular positions „SoI = 37.9¶, SoI = 57.7¶, „Int = 120.5¶ and
Int = 50.7¶. SNR 10 dB and SIR 3 dB. Sample support 1,000 snapshots.
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Figure 35 – E ects of factor µ in small sample support UCA 2-D DoA estimation. 16 sensor
UCA mapped in beamspace by 11 phase modes. Resolving two narrowband
sources with angular positions „SoI = 37.9¶, SoI = 57.7¶, „Int = 120.5¶

and Int = 50.7¶. SNR 10 dB and SIR 3 dB. Small sample support of 10
snapshots.



Chapter 5. Experimental Results 71

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

10
1

A
b
so

lu
te

 E
st

im
a
ti

o
n
 E

rr
o
r 

(°
)

Small Sample Support - Effects of  (1 snapshot)

SoI-Azimuth

Int-Azimuth

SoI-Zenith

Int-Zenith

Figure 36 – E ects of factor µ in small sample support UCA 2-D DoA estimation. 16 sensor
UCA mapped in beamspace by 11 phase modes. Resolving two narrowband
sources with angular positions „SoI = 37.9¶, SoI = 57.7¶, „Int = 120.5¶ and
Int = 50.7¶. SNR 10 dB and SIR 3 dB. Small sample support of a single

snapshot.

5.2 Simultaneous Spatial And Temporal Evaluations

In this section, we address the problems of reduced spatial and temporal sampling

simultaneously. Employing combined phase mode incorporation and Leakage Minimization

techniques, we evaluate their joint behavior similarly to the isolated multivariate simula-

tions. Toeplitz Conditioning was not applied due to the particular form of each entry of

the beamspace array manifold with incorporated phase modes, each expressed by more

than one phase mode. In this manner, the disassociation of azimuth and zenith-dependent

portions of the array manifold is not readily possible.

The speci c parameters for these simulations are: an ensemble of 1.000 independent

runs, sources with a SIR of 3 dB, and AWGN with an SNR of 10 dB. Six sensors UCA

mapped in beamspace by 5, and up to 13, phase modes. Leakage Minimization µ factor

of 0.8 and sample support ranging from 1.000 to 5 snapshots. Angular positions are the

same as in Section 5.1.

Starting with a more detailed analysis of the number of phase modes for beamspace

mapping, we show the e ects of incorporating phase modes to a small sample support 2-D

DoA estimation, both in the presence and absence of Leakage Minimization. Figs. 37 and

38 depict increasing incorporated phase modes solution errors for estimations with only 10

snapshots.
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Figure 37 – Combined e ects of incorporating phase modes in small sample support 2-D
DoA estimation employing Leakage Minimization (SSS). UCA having
six sensors with spacing of 1.047 , resolving two narrowband sources with
angular positions „SoI = 37.9¶, SoI = 57.7¶, „Int = 120.5¶ and Int = 50.7¶.
SIR of 3 dB, SNR of 10 dB and small sample support of 10 snapshots.
Additional phase modes are incorporated (from an initial 5 up to a total
of 13).
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Figure 38 – Combined e ects of incorporating phase modes in small sample support 2-D
DoA estimation without Leakage Minimization (no SSS). UCA having
six sensors with spacing of 1.047 , resolving two narrowband sources with
angular positions „SoI = 37.9¶, SoI = 57.7¶, „Int = 120.5¶ and Int = 50.7¶.
SIR of 3 dB, SNR of 10 dB and small sample support of 10 snapshots.
Additional phase modes are incorporated (from an initial 5 up to a total
of 13).
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Continuing, with a greater focus on small sample support, Figs. 39-42 depict

the combined behavior of beamspace mapping, by 5 and 11 phase modes, and Leakage

Minimization for decreasing sample support. The optimum value of additional phase modes

utilized in these simulations was obtained by the results of Figs. 37 and 38.
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Figure 39 – Combined behavior of beamspace mapping and Leakage Minimization with
decreasing sample support for SoI azimuth DoA. UCA having six sen-
sors with a spacing of 1.047 and beamspace mapping with 5 and 11 (5+6
incorporated) phase modes. Resolving two narrowband sources with angular
positions „SoI = 37.9¶, SoI = 57.7¶, „Int = 120.5¶ and Int = 50.7¶. SIR of 3
dB and SNR of 10 dB.

The combined results tend to behave similarly to the individual mitigating tech-

niques results in Section 5.1, where additional phase modes yield better results in spatially

aliased solutions and minimized leakage solutions yield better results than small sample

support solutions. This predictable behavior is depicted in Figs. 39 and 40.

However, we can observe that, for the combined limiting factors scenario, leakage

minimization contributions for the overall improvements are somewhat more pronounced,

especially for the Interferer DoA solutions. This behavior can be seen in Figs. 41 and

42, where the spatially aliased, minimized leakage solutions can be better than solutions

with incorporated phase modes but without leakage minimization. These observations also

point to mutual interference of the two mitigating techniques (phase modes incorporation

and leakage minimization), as these techniques are based on di erent principles to improve

DoA estimation.
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Figure 40 – Combined behavior of beamspace mapping and Leakage Minimization with
decreasing sample support for SoI zenith DoA. UCA having six sensors with
a spacing of 1.047 and beamspace mapping with 5 and 11 (5+6 incorporated)
phase modes. Resolving two narrowband sources with angular positions
„SoI = 37.9¶, SoI = 57.7¶, „Int = 120.5¶ and Int = 50.7¶. SIR of 3 dB and
SNR of 10 dB.
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Figure 41 – Combined behavior of beamspace mapping and Leakage Minimization with
decreasing sample support for Interferer azimuth DoA. UCA having six
sensors with a spacing of 1.047 and beamspace mapping with 5 and 11 (5+6
incorporated) phase modes. Resolving two narrowband sources with angular
positions „SoI = 37.9¶, SoI = 57.7¶, „Int = 120.5¶ and Int = 50.7¶. SIR of 3
dB and SNR of 10 dB.
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Figure 42 – Combined behavior of beamspace mapping and Leakage Minimization with
decreasing sample support for Interferer zenith DoA. UCA having six
sensors with spacing of 1.047 and beamspace mapping with 5 and 11 (5+6
incorporated) phase modes. Resolving two narrowband sources with angular
positions „SoI = 37.9¶, SoI = 57.7¶, „Int = 120.5¶ and Int = 50.7¶. SIR of 3
dB and SNR of 10 dB.

5.3 Underwater Environment Simulation

This subsection employs the methods described herein in conditions similar to a

real shallow underwater scenario. We utilize real-life signals from the ShipsEar database,

available in <http://atlanttic.uvigo.es/underwaternoise/>. We assume two uncorrelated

surface sources, namely a cruise ship and a motorboat, immersed in isotropic AWGN

with SNR of 15dB and simulate the e ects of surface and bottom re ections, resulting in

multipath propagation.

This propagation phenomenon was simulated by adding two others sources to

our incoming signal, each one representing a surface re ection of the direct path sources.

Di erent time shifts were applied to each original direct path signal, accounting for di erent

propagation paths. These time-shifted signals were used as spurious sources, resulting from

multipath propagation. The angular positions of said spurious multipath sources were set

with a substantially di erent zenithal angle, again, for representation of surface re ection

and, on top of that, a slight variation in azimuthal angle, simulating possible horizontal

refraction. By this approach, we manage to simulate two pairs of sources, representing

direct path and multipath propagation of both SoI (cruise ship) and Interferer (motorboat),

all based in real-life signals.

The submerged UCA has 32 sensors mapped by 15 phase modes (N = 7) and R = .

It receives direct and re ected planewaves from both sources, with a central frequency
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set to 1 kHz. Both small sample support techniques (Toeplitz conditioning and leakage

minimization) are used and factor µ was set to 0.8, based on the results depicted in Fig. 45.

The angular position of the two uncorrelated sources are: cruise ship (SoI) „CS = 23.1¶,

CS = 48.5¶ and motorboat (Interferer) with „MB = 142¶, MB = 34.7¶. Sources with SIR

of 5 dB and immerse in AWGN with SNR 15 dB. Their respective multipath spurious

signals are hitting the array from „CSmulti = 26¶, CSmulti = 19.3¶, and „MBmulti = 143.9¶,

MBmulti = 11.5¶. These spurious multipath DoAs represent surface re ections and slight

azimuthal refraction. Spurious multipath sources have an attenuation of 15 dB.
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Figure 43 – Decreasing sample support in simulated underwater 2-D DoA estimation. 32
sensor UCA mapped by 15 phase modes. Resolving two narrowband sources
(real signals) with angular positions „CS = 23.1¶, CS = 48.5¶, „MB = 142¶

and MB = 34.7¶ with multipath propagation. Depicting the Cruise ship
(SoI) DoA estimation errors in function of sample support. SNR 15 dB, SIR
5 dB, and multipath attenuation of 15 dB.

In this work, we did not address directly the problem of correlated signals arising

from direct and multipath propagation of the planewave from a particular source, as it is

not the scope of his work. Despite this unattended issue, results depicted in Figs. 43 and 44

show that the small sample support techniques, indicated by the su x SSS in the legend,

produced improved results, mainly in Root-MUSIC azimuth estimation, when compared

with results in the absence of the mitigating techniques. Also, using a single value of µ for

a wide range of sample support may have di erent and even contradictory e ects. In our

experiments, while utilizing leakage minimization with a particular µ factor value may

work well for smaller sample support, it can present small or negligible improvements for

larger sample support.
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Figure 44 – Decreasing sample support in simulated underwater 2-D DoA estimation. 32
sensor UCA mapped by 15 phase modes. Resolving two narrowband sources
(real signals) with angular positions „CS = 23.1¶, CS = 48.5¶, „MB = 142¶

and MB = 34.7¶ with multipath propagation. Depicting the Motorboat
(Interferer) DoA estimation errors in function of sample support. SNR 15
dB, SIR 5 dB, and multipath attenuation of 15 dB.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

0

10
1

10
2

A
b

so
lu

te
 E

st
im

a
ti

o
n
 E

rr
o

r 
(°

)

Simulated Underwater Environment - Effects of  ( 20 snapshot )

SoI-Azimuth

Int-Azimuth

SoI-Zenith

Int-Zenith

Figure 45 – E ects of factor µ in simulated underwater 2-D DoA estimation and small
sample support. Resolving two narrowband sources (real signals) with angular
positions „CS = 23.1¶, CS = 48.5¶, „MB = 142¶ and MB = 34.7¶ with
multipath propagation. Small sample support of 20 snapshots, SNR 15 dB,
SIR 5 dB, and multipath propagation attenuation of 15 dB.
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6 CONCLUSION

Uniform Circular Array is an important geometry for planar arrays with some

unique characteristics that result in a very particular signal model and array manifold

vector, not suited for all classical array signal processing methods and optimization

techniques. This problem can be circumvented, up to a substantial degree, by beamspace

mapping via Fourier analysis of the excitation function (or the receiving signal along the

circular aperture).

The approach to 2-D DoA estimation explored herein employs two versions of

the MUSIC algorithm, each behaving di erently in the presence of limiting parameters

and responding also di erently to the combined application of mitigation techniques.

Most of the methods presented are directed to beamspace Root-MUSIC approach and,

consequently, present greater improvements when mitigation techniques are applied.

Mitigation techniques addressed herein were used with correlated signals produced

by direct and multipath propagation of planewaves from each source. Although not

within the scope of this work, when applied to correlated sources in reduced spatial or

temporal input data situations, we obtained favorable results, not su ering greatly from

the correlation between direct and multipath propagation signals.

We see in this work that reduced spatial sampling and inaccurate beamspace

mapping e ects can be satisfactorily mitigated by incorporating additional phase modes.

Incorporating a number of additional phase modes, up to an optimum value determined

by the criteria of Eq. (3.25), improves considerably the accuracy of the DoA estimation. In

our simulations, we found empirically that the optimum beamspace mapping was through

11 phase modes, as shown in Figs. 23-24.

In Figs. 25-27, we can observe more clearly the improvements in DoA accuracy due

to phase modes incorporation when compared with spatially-aliased solutions. Also, the

e ects of incorporation of phase modes are more visible for the azimuth parameter, which

is estimated via Root-MUSIC, while the zenithal DoA, estimated by 1-D Spectral MUSIC

search seems to be more resistant to spatial aliasing.

Regarding the e ects of SNR in spatially aliased DoA estimations, we observed

that azimuth DoA is more responsive to increasing SNR. Azimuth DoA is estimated via

beamspace Root-MUSIC and, by the incorporation of additional phase modes, the better

array description leads to better estimations. Zenithal DoA, estimated via Spectral MUSIC,

is less susceptible to SNR.

For the Small Sample Support limitation, we aim to access the conditioning of

the sample covariance matrix. Due to reduced input data, the sample covariance matrix
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deviates considerably from the statistical covariance matrix provided by the array signal

model due to subspace leakage.

The subspace division of a signal covariance matrix is carried out based on sorting

the eigenvalues and respective eigenvectors. Signal subspace eigenvectors should have

conspicuous values and each source is related to a signal eigenvector. With small sample

support, the eigenvalues are much closer together and an eigenvalue corresponding to a

noise eigenvector can be larger than the eigenvalue of a signal eigenvector, leading to an

intersection between subspaces. Subspace leakage can also happen in low SNR situations

where, again, eigenvalues tend to be close due to di culties in separating signal sources

from background noise.

We observed that matrix conditioning could mitigate biased covariance matrices,

allowing even a single snapshot DoA estimation. We utilized µ = 0.9 as the optimum value

for our simulations of Toeplitz Conditioning and Leakage Minimization. This high value

corroborates our good estimation of cross-correlation components and their minimization

in the rst iteration. However, factor µ presents an additional complexity and, as a

predetermined value calculated for small sample support, can yield disappointing results

for larger amounts of temporal data; this is shown in the larger sample support regions of

Figs. 30, 31 and 33.

Assessing simultaneous reduced temporal and spatial sampling, Toeplitz Condi-

tioning cannot be used concomitantly with sparse UCA due to the need to express the

phase mode of the entries of the beamspace array manifold as a single Bessel function

and complex exponential in order to dissociate azimuth and zenith-dependent portions of

the beampace array manifold. In a sparse UCA, in order to incorporate additional phase

modes, each one is expressed by more than one Bessel function and complex exponential,

so Toeplitz Conditioning cannot be readily applied.

In Figs. 37-41 we conclude that the joint behavior of incorporating phase modes

and Leakage Minimization follows partially the behaviours of isolated mitigating tech-

niques. Leakage Minimization presents more pronounced e ects on overall behavior than

incorporating phase modes. Fig. 41 suggests mutual adverse e ects between the two miti-

gating techniques, where 2-D DoA absolute error behavior with simultaneous mitigating

techniques diverges from the isolated techniques.

In the underwater environment simulation, the e ects of multipath propagation, akin

to correlated sources, are present. Although not addressed directly, Toeplitz Conditioning

and Leakage Minimization end up yielding favorable results in this additionally limiting

condition, on top of small sample support.

We show in Figs. 43 and 44 the improved results in 2-D DoA estimating when

applying Small Sample Support mitigation techniques. For its good results, the 20 snapshots
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sample support was utilized to evaluate the e ects of factor µ. The criterion for optimum

value was the SoI azimuth DoA „cs. Fig. 45 depicts that µ = 0.8 yields the best results

for our criterion. Also, this high value of µ shows that our Leakage Minimization process

was successful, as cross-correlation terms were precisely estimated. Low values of µ would

indicate poor cross-correlation estimation and the necessity of additional iterations of the

Leakage Minimization process.

6.1 Suggestions for Future Works

The suggested continuity for this work is to extend the knowledge and results

beyond DoA estimation with uniform circular arrays, maintaining the limiting factors

of a reduced number of sensors and small sample support. Our future studies would

comprehend three consecutive initiatives. Initially, we intend to evaluate the use of phase

modes-based beamspace transform with suitable volumetric array geometries including

cylindrical arrays, to improve zenith DoA estimation, and spherical arrays, aiming at

obtaining isotropic 2-D DoA. The next initiative would be the extension of beamspace 2-D

DoA with a reduced number of sensors and small sample support mitigating techniques

to volumetric arrays. Finally, we would be able to address the application of beamspace

2-D DoA in passive ranging estimation with a multistatic arrangement via Vertical Direct

Passive Ranging (VDPR) and Horizontal Direct Passive Ranging (HDPR) WAITE, 2002;

MARAGE; MORI, 2013 under reduced spatial and temporal sampling.

The circular symmetry in cylindrical and spherical arrays should allow beamspace

transform for 1-D or 2-D DoA estimation with improved zenithal resolution when compared

with UCA. With a satisfactory volumetric phase modes transform, it should be possible

to extend reduced spatial and temporal sampling beamspace techniques to these array

geometries. Regarding passive ranging, HDPR is a well-known geometric method of passive

ranging for submarine sonars. As HDPR relies only on azimuth DoAs, our work on UCA

under reduced sampling can be readily applied. VDPR, however, utilizes only zenith DoAs,

so a volumetric array should be preferable, as it should have a better zenithal resolution.

VDPR also relies on multipath propagation, so the indirect favorable e ects of leakage

minimization on correlated sources should be bene cial for passive ranging.
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APPENDIX A – ALGORITHMS

Algorithm 1 Phase Modes-based Beamspace transform
M Number of sensors
N Highest-order Phase Mode
n 2N + 1

Wavelength
K 2 /
R Radius (in wavelengths)
„ = 0 : 0.1 : 360 Û 2-D DoA grid
= 0 : 0.1 : 90
D Number of sources Û Previously established
size Number os snapshots
w exp (j 2

M
)

for i = 1 : n do
for j = 1 :M do

F(i, j) = 1
M
w(j 1)( n 1+i)

end for
end for
WH F Û Beamforming matrix
for k = 1 : size do

Rx = Rx + x(k)x(k)H

x̄(k) = WHx(k)
Rx̄ = Rx̄ + x̄(k)x̄(k)H

end for
Rx = Rx/size Û Element-space sample covariance matrix
Rx̄ = Rx̄/size Û Beamspace sample covariance matrix
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Algorithm 2 Element-space and Beamspace Spectral MUSIC
Rx = E EH Û EVD Element-space sample covariance matrix
R̄x = Ē ¯ ĒH Û EVD Beamspace sample covariance matrix
Es = E(:, 1 : D)
En = E(:, D + 1 :M)
Ēs = Ē(:, 1 : D)
Ēn = Ē(:, D + 1 : n)
for „ = 0 : 360¶ do

for = 0 : 90¶ do
for m = 1 :M do

a(m, 1) = exp[(j(KR) sin( ) cos((2 (m 1)/M ) „)]
end for
PMUSIC( , „) = 1/(aHEnE

H
na) Û 2-D grid search

end for
end for
PMUSIC = PMUSIC/|PMUSIC | Û Normalization
for „ = 0 : 360¶ do

for = 0 : 90¶ do
for q = 1 : n do

ā(q, 1) = exp( N 1 + q)J( N 1+q)[KR sin( )] exp[j( N 1 + q)(„)]
end for
P̄MUSIC , „) = 1/(āHĒnĒ

H
n ā) Û 2-D grid search

end for
end for
P̄MUSIC = P̄MUSIC/|P̄MUSIC | Û Normalization
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Algorithm 3 Beamspace Root-MUSIC
for q = 1 : n do

d(q, 1) = exp( N 1 + q)J( N 1+q)(KR sin( ))
end for
D = diag(d);
RTS = DHĒnĒ

H
nD

for i = 1 : n 1 do
coef sup(i) =

q
(diag(RTS, i))

end for
for i = 1 : n 1 do

coef inf (i) =
q

(diag(RTS, i))
end for

coefTotal = [ iplr(coef inf )
...
q

(diag(RTS))
...(coef sup)]

coefTotal = iplr(coefTotal) Û Coe cients of the Root-MUSIC polynomial
rootMUSIC = roots(coefTotal)
for i = 1 : n 1 do Û Polynomial Rooting Algorithm
doa„(i) = angle(rootMUSIC(i)) Û Angle of the root
mag(i) = |rootMUSIC(i)| Û Magnitude of the root

end for
sort roots by magnitude

ROOTS = [mag
...doa„]

doa„SoI = angle(First root closest to the unit circle) Û Azimuth DoA of SoI
doa„Int = angle(Second root closest to the unit circle) Û Azimuth DoA of Interferer

Algorithm 4 Two-step 2-D DoA with Root-MUSIC and Spectral MUSIC
90 ¶ Û Initial presumed zenith angle = 90¶

Execute Beamspace Root-MUSIC Algorithm and obtain doa„SoI , doa„Int

Zenith DoA obtained via Spectral MUSIC
for = 0 : 90¶ do

for m = 1 :M do
a(m, 1) = exp[(j(KR) sin( )
cos((2 (m 1)/M) doa„)]

end for
PMUSIC( ) = 1/(aHEnE

H
na) Û 1-D grid search in the direction of the Azimuth DoA

end for
PMUSIC = PMUSIC/|PMUSIC | Û Normalization

SoI = argmax (PMUSIC(„SoI))
Int = argmax (PMUSIC(„Int))
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Algorithm 5 Leakage Minimization: cross-correlation estimation and revision of
Beamspace sample covariance matrix

90¶ Û For the rst step, presume zenith angle
µ 0.8 Û 0 < µ < 1

Obtain biased initial DoA estimations „SoI , „Int from Beamspace Root-
MUSIC algorithm

for m=1:M do
aini1(m) = exp(j(KR) sin( ) cos( (2 (m 1)/M ) + („SoI)))
aini2(m) = exp(j(KR) sin( ) cos( (2 (m 1)/M ) + („Int)))

end for
Aini = [aini1 aini2] Û Beamspace array manifold matrix of initial DoAs for SoI and
Interferer sources
P = WHAini(AH

iniWWHAini) 1(AH
iniW)

T = PRx̄(I(n) P) Û Residual cross-correlation
Rx̄up = Rx̄ µ(T +TH) Û Revised Beamspace Sample Covariance Matrix

Utilize Rx̄up in Beampace Root-MUSIC for revised azimuth DoA and in
Spectral MUSIC for zenith DoA
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APPENDIX B – BEAMSPACE TRANSFORM OF

BACKGROUND NOISE

Chapter 3 addressed the beamspace transform based on phase modes excitation of

the UCA array manifold. In Eq. (3.32) we have the beamspace noise vector n̄(k) Now, we

show the e ects of applying phase mode transformation to a noise process n(k), particularly

to an isotropic and homogeneous one, in order to obtain n̄(k). The noise-only process is

akin to a random eld HONG; TEWFIK, 1991. A random eld ‘(p1 . . .pm) is de ned

by a random function f(p) in Rm. Considering a UCA immersed in background noise

only (akin to an Euclidean-dimensioned random eld), the sensors sample this random

eld at the points pm = R
Ë
cos((m 1) 2

M
) sin((m 1) 2

M
) 0

ÈT
. The covariance value

of the noise-only output of the sensors is given by Rx(pi,pj) = E [x(pi)xú(pj)], and the

corresponding covariance matrix Rx.

A random process in classi ed as stationary LEON-GARCIA, 2011 (in our case,

spatially stationary) when the mean or mathematical expectation mx(pi) = E [x(pi)] and

the variance VAR [x(pi)] = E [(x(pi) mx(pi))2] are constants (spatially invariant), and

the autocovariance Rx(pi,pj) is a function of pi pj only. Whide-sense stationary is a

more encompassing classi cation where the criteria of constant mean and autocovariance

as function of pi pj hold, where i and j are indexes of two sensors and pi and pj are

the position vectors of these sensors.

In general, the noise eld will not be spatially stationary (stationary in variable m,

spatial samples), consequently, the covariance will not be a function of pi pj. However,

if the random process is isotropic YADRENKO, 1983, it consequently will be spatially

stationary. Isotropy can be de ned both for stationary processes if it is also true that

Rx(pi,pj) is a function of the Euclidean distance Îpi pjÎ only, then we say that ‘ is also

isotropic. For the particular special case of a spatially white and homogeneous random

eld, the corresponding covariance is Rx(pi,pj) = ‡2”(i j).

Regarding the phase modes-based beamforming, we de ne Rx̄(t, u) the beamspace

covariance for the transformed noise-only process and Rx̄ as the transformed covariance

matrix, where t and u are indexes of two phase-modes. It is possible to relate the covariance

matrices of noise processes in element-space and beamspace according to the similarity

transformation of Eq. (3.33). Moreover, for the assumed isotropic background noise process,

the covariance matrix in element-space Rx is circulant, and consequently, diagonalized by

the M M DFT matrix W, in the form

W(o,p) =
1Ô
M

exp (j
2 op

M
). (B.1)
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In this manner, Rx̄ is a diagonal matrix, and we can conclude that an isotropic

background process in element-space is mapped into a possibly nonstationary white noise

process. Speci cally, and according to the Perseval’s Theorem, a spatially white background

noise in element space is mapped in a stationary noise processes with variance ‡2/M and

with covariance matrix Rx̄ = ‡2

M
IM , IM being the M M identity matrix.

For this formulation of phase-modes transformation for background noise, W is

a square matrix (due to the similarity transformation in Eq. (3.33)) that represents the

particular transformation of an element-space odd M sensor UCA into a beamspace

(2N + 1 =M)-sensor array.


